qcd transition in magnetic fields gergely endr odi
play

QCD transition in magnetic fields Gergely Endr odi University of - PowerPoint PPT Presentation

Introduction Free case Phase diagram Equation of state CME QCD transition in magnetic fields Gergely Endr odi University of Regensburg Advances in Strong-Field Electrodynamics Budapest, 3rd-6th February 2014 QCD + B Gergely Endr odi


  1. Introduction Free case Phase diagram Equation of state CME QCD transition in magnetic fields Gergely Endr˝ odi University of Regensburg Advances in Strong-Field Electrodynamics Budapest, 3rd-6th February 2014 QCD + B Gergely Endr˝ odi University of Regensburg

  2. Introduction Free case Phase diagram Equation of state CME Outline - first part • introduction ◮ strong interactions at finite temperature ◮ quark-gluon plasma exposed to magnetic fields ◮ appetizer: chiral magnetic effect in heavy-ion collisions ◮ approaches to study QCD • free case: energy levels ◮ non-relativistic case, infinite volume ◮ relativistic case, infinite volume ◮ relativistic case, on the torus ◮ Hofstadter’s butterfly • free case, thermodynamic potential ◮ representation at finite T with Matsubara frequencies ◮ treatment via Mellin transformation ◮ alternative derivation: Schwinger proper-time method ◮ alternative representation: with energies ◮ charge renormalization vs B -dependent divergences ◮ observables derived from log Z QCD + B Gergely Endr˝ odi University of Regensburg

  3. Introduction Free case Phase diagram Equation of state CME Outline - second part • numerical results I: phase diagram ◮ symmetries and order parameters ◮ predictions from effective theories and models ◮ magnetic catalysis and inverse catalysis ◮ transition temperature, nature of transition at nonzero B • numerical results II: equation of state ◮ concept of the pressure in magnetic fields ◮ magnetization, magnetic susceptibility ◮ comparison to hadron resonance gas model ◮ squeezing-effect in heavy-ion collisions • numerical results III: chiral magnetic effect ◮ electric polarization of CP-odd domains ◮ comparison to model predictions QCD + B Gergely Endr˝ odi University of Regensburg

  4. Introduction Free case Phase diagram Equation of state CME Literature • Landau-Lifshitz Vol.3 Quantum mechanics, chapter XV. (non-relativistic eigenvalue problem) • Akhiezer, Berestetskii: Quantum electrodynamics, chapter 12. (relativistic eigenvalue problem) • Kapusta: Finite-temperature field theory, chapter 2. (functional integral for fermions/bosons) • Al-Hashimi, Wiese: “Discrete accidental symmetry for a particle in a constant magnetic field on a torus” • Hofstadter: “Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields” • Schwinger: “On gauge invariance and vacuum polarization” • Dunne: “Heisenberg-Euler effective Lagrangians: basics and extensions” QCD + B Gergely Endr˝ odi University of Regensburg

  5. Introduction Free case Phase diagram Equation of state CME QCD and quark-gluon plasma • elementary particle interactions: gravitational, electromagnetic, weak, strong � �� � Standard Model • strong sector: Quantum Chromodynamics • elementary particles: quarks ( ∼ electrons) and gluons ( ∼ photons) but: they cannot be observed directly ⇒ confinement at low temperatures • asymptotic freedom [Gross, Politzer, Wilczek ’04] ⇒ heating or compressing the system leads to deconfinement : quark-gluon plasma is formed • transition between the two phases characteristics: order (1st/2nd/crossover) critical temperature T c equation of state QCD + B Gergely Endr˝ odi University of Regensburg

  6. Introduction Free case Phase diagram Equation of state CME QCD phase diagram • why is the physics of the quark-gluon plasma interesting? ◮ large T : early Universe, cosmological models ◮ large ρ : neutron stars ◮ large T and/or ρ : heavy-ion collisions, experiment design QCD + B Gergely Endr˝ odi University of Regensburg

  7. Introduction Free case Phase diagram Equation of state CME QCD phase diagram • why is the physics of the quark-gluon plasma interesting? ◮ large T : early Universe, cosmological models ◮ large ρ : neutron stars ◮ large T and/or ρ : heavy-ion collisions, experiment design QCD + B Gergely Endr˝ odi University of Regensburg

  8. Introduction Free case Phase diagram Equation of state CME QCD phase diagram • why is the physics of the quark-gluon plasma interesting? ◮ large T : early Universe, cosmological models ◮ large ρ : neutron stars ◮ large T and/or ρ : heavy-ion collisions, experiment design QCD + B Gergely Endr˝ odi University of Regensburg

  9. Introduction Free case Phase diagram Equation of state CME QCD phase diagram • why is the physics of the quark-gluon plasma interesting? ◮ large T : early Universe, cosmological models ◮ large ρ : neutron stars ◮ large T and/or ρ : heavy-ion collisions, experiment design QCD + B Gergely Endr˝ odi University of Regensburg

  10. Introduction Free case Phase diagram Equation of state CME QCD phase diagram • why is the physics of the quark-gluon plasma interesting? ◮ large T : early Universe, cosmological models ◮ large ρ : neutron stars ◮ large T and/or ρ : heavy-ion collisions, experiment design • additional, relevant parameter: ◮ external magnetic field B QCD + B Gergely Endr˝ odi University of Regensburg

  11. Introduction Free case Phase diagram Equation of state CME Example 1: neutron star [Rea et al. ’13] • possible quark core at center with high density, low temperature • magnetars: extreme strong magnetic fields QCD + B Gergely Endr˝ odi University of Regensburg

  12. Introduction Free case Phase diagram Equation of state CME Typical magnetic fields 10 − 5 T • magnetic field of Earth 10 − 3 T • common magnet 10 2 T • strongest human-made field in lab 10 10 T • magnetar surface • magnetar core ? QCD + B Gergely Endr˝ odi University of Regensburg

  13. Introduction Free case Phase diagram Equation of state CME Example 2: heavy-ion collision [STAR collaboration, ’10] • off-central collisions generate magnetic fields: strength controlled by √ s and impact parameter (centrality) • strong (but very uncertain) time-dependence • anisotropic spatial gradients QCD + B Gergely Endr˝ odi University of Regensburg

  14. Introduction Free case Phase diagram Equation of state CME Example 2: heavy-ion collision 30 25 r=(0,0,0) eB y @ fm - 2 D r=(3 fm, 0, 0) 4 20 r=(0, 3 fm, 0) 2 >/ m 1 r=(3 fm, 3 fm, 0) 0.1 15 <(e B) 0.01 10 0.001 10 - 4 5 10 - 5 0 0 2 4 6 8 10 12 14 2.0 t @ fm D b (fm) 0.5 1.0 1.5 [Bloczynski et al. ’12] [Gursoy et al ’13] • off-central collisions generate magnetic fields: strength controlled by √ s and impact parameter (centrality) • strong (but very uncertain) time-dependence • anisotropic spatial gradients QCD + B Gergely Endr˝ odi University of Regensburg

  15. Introduction Free case Phase diagram Equation of state CME Example 2: heavy-ion collision eB y @ fm - 2 D 1 0.1 0.01 0.001 10 - 4 10 - 5 2.0 t @ fm D 0.5 1.0 1.5 [Deng et al ’12] [Gursoy et al ’13] • off-central collisions generate magnetic fields: strength controlled by √ s and impact parameter (centrality) • strong (but very uncertain) time-dependence • anisotropic spatial gradients QCD + B Gergely Endr˝ odi University of Regensburg

  16. Introduction Free case Phase diagram Equation of state CME Typical magnetic fields 10 − 5 T • magnetic field of Earth 10 − 3 T • common magnet 10 2 T • strongest man-made field in lab 10 10 T • magnetar surface • magnetar core ? 10 15 T • LHC Pb-Pb at 2.7 TeV, b = 10 fm [Skokov ’09] convert: 10 15 T ≈ 10 m 2 π ≈ 2 Λ 2 QCD ⇒ electromagnetic and strong interactions can compete QCD + B Gergely Endr˝ odi University of Regensburg

  17. Introduction Free case Phase diagram Equation of state CME Chiral magnetic effect • QCD is parity-symmetric (neutron EDM < 10 − 26 e cm) � / � ψ f + 1 1 � ¯ 16 π 2 Tr F µν ˜ L QCD = ψ f D + m f 2Tr F µν F µν + θ · F µν f � �� � Q top ⇒ θ < 10 − 10 (strong CP problem) • axial anomaly � d 4 x ∂ µ j µ 5 = 2 Q top N R − N L ≡ ⇒ topology converts between left- and right-handed quarks QCD + B Gergely Endr˝ odi University of Regensburg

  18. Introduction Free case Phase diagram Equation of state CME Chiral magnetic effect • local CP-violation through domains with Q top � = 0 ? • detect them through magnetic field B [Kharzeev et al. ’08] 1. quarks interact with B : spins aligned 2. quarks interact with topology: chiralities (helicities) “aligned” 3. result: charge separation QCD + B Gergely Endr˝ odi University of Regensburg

  19. Introduction Free case Phase diagram Equation of state CME Chiral magnetic effect • Q top -domains fluctuate, direction of B fluctuates ⇒ effect vanishes on average • correlations may survive ( α, β = ± ) a αβ = − cos [(Φ α − Ψ RP ) + (Φ β − Ψ RP )] [STAR collaboration ’09] • need 3-particle correlations (technically complicated) • CME prediction: a ++ = a −− = − a + − > 0 • CP-even backgrounds should be subtracted QCD + B Gergely Endr˝ odi University of Regensburg

Recommend


More recommend