public seed pseudorandom permutations
play

Public-seed Pseudorandom Permutations Pratik Soni Stefano Tessaro - PowerPoint PPT Presentation

Public-seed Pseudorandom Permutations Pratik Soni Stefano Tessaro UC Santa Barbara UC Santa Barbara EUROCRYPT 2017 Cryptographic schemes often built from generic building blocks Cryptographic schemes often built from generic building


  1. UCE security 𝑡 ← Gen(1 𝜇 ) 𝑔 ← Funcs(𝑛, 𝑜) ℎ 𝑡 𝑔 source 𝑇 𝐼 = (𝐻𝑓𝑜, ℎ) Bellare Hoang Keelveedhi

  2. UCE security 𝑡 ← Gen(1 𝜇 ) 𝑔 ← Funcs(𝑛, 𝑜) ℎ 𝑡 𝑔 source 𝑇 𝐼 = (𝐻𝑓𝑜, ℎ) Bellare Hoang Keelveedhi

  3. UCE security 𝑡 ← Gen(1 𝜇 ) 𝑔 ← Funcs(𝑛, 𝑜) ℎ 𝑡 𝑔 source 𝑇 𝑀 𝐼 = (𝐻𝑓𝑜, ℎ) 𝐸 distinguisher Bellare Hoang Keelveedhi

  4. UCE security 𝑡 ← Gen(1 𝜇 ) 𝑡 ← Gen(1 𝜇 ) 𝑔 ← Funcs(𝑛, 𝑜) ℎ 𝑡 𝑔 source 𝑇 𝑀 𝒕 𝐼 = (𝐻𝑓𝑜, ℎ) 𝐸 distinguisher Bellare Hoang Keelveedhi

  5. UCE security 𝑡 ← Gen(1 𝜇 ) 𝑔 ← Funcs(𝑛, 𝑜) ℎ 𝑡 𝑔 source 𝑇 𝑀 𝒕 𝐼 = (𝐻𝑓𝑜, ℎ) 0/1 𝐸 distinguisher Bellare Hoang Keelveedhi

  6. UCE security 𝑡 ← Gen(1 𝜇 ) 𝑔 ← Funcs(𝑛, 𝑜) ℎ 𝑡 𝑔 ≈ source 𝑇 𝑀 𝒕 𝐼 = (𝐻𝑓𝑜, ℎ) 0/1 𝐸 distinguisher Bellare Hoang Keelveedhi

  7. psPRP security 𝑡 ← Gen(1 𝜇 ) 𝝇 ← 𝐐𝐟𝐬𝐧𝐭(𝒐) 𝝇/𝝇 −𝟐 −𝟐 𝝆 𝒕 /𝝆 𝒕 𝑇 𝑄 = (𝐻𝑓𝑜, 𝜌, 𝜌 −1 ) 𝐸

  8. psPRP security 𝑡 ← Gen(1 𝜇 ) 𝝇 ← 𝐐𝐟𝐬𝐧𝐭(𝒐) 𝝇/𝝇 −𝟐 −𝟐 𝝆 𝒕 /𝝆 𝒕 Makes forward and 𝑇 𝑄 = (𝐻𝑓𝑜, 𝜌, 𝜌 −1 ) backward queries! 𝐸

  9. psPRP security 𝑡 ← Gen(1 𝜇 ) 𝝇 ← 𝐐𝐟𝐬𝐧𝐭(𝒐) 𝝇/𝝇 −𝟐 −𝟐 𝝆 𝒕 /𝝆 𝒕 Makes forward and 𝑇 𝑄 = (𝐻𝑓𝑜, 𝜌, 𝜌 −1 ) backward queries! 𝑀 𝒕 𝐸

  10. psPRP security 𝑡 ← Gen(1 𝜇 ) 𝝇 ← 𝐐𝐟𝐬𝐧𝐭(𝒐) 𝝇/𝝇 −𝟐 −𝟐 𝝆 𝒕 /𝝆 𝒕 Makes forward and 𝑇 𝑄 = (𝐻𝑓𝑜, 𝜌, 𝜌 −1 ) backward queries! 𝑀 𝒕 0/1 𝐸

  11. psPRP security 𝑡 ← Gen(1 𝜇 ) 𝝇 ← 𝐐𝐟𝐬𝐧𝐭(𝒐) 𝝇/𝝇 −𝟐 −𝟐 𝝆 𝒕 /𝝆 𝒕 Makes forward and 𝑇 𝑄 = (𝐻𝑓𝑜, 𝜌, 𝜌 −1 ) backward queries! 𝑀 𝒕 0/1 𝐸 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , left and right are indistinguishable.

  12. psPRP security 𝑡 ← Gen(1 𝜇 ) 𝝇 ← 𝐐𝐟𝐬𝐧𝐭(𝒐) 𝝇/𝝇 −𝟐 −𝟐 𝝆 𝒕 /𝝆 𝒕 Makes forward and 𝑇 𝑄 = (𝐻𝑓𝑜, 𝜌, 𝜌 −1 ) backward queries! 𝑀 𝒕 0/1 𝐸 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , left and right are indistinguishable.

  13. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , …

  14. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 𝑇

  15. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 (+, 0 𝑜 ) (+, 0 𝑜 ) 𝑇

  16. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 𝑧 𝑧 (+, 0 𝑜 ) (+, 0 𝑜 ) 𝑇

  17. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 𝑧 𝑧 (+, 0 𝑜 ) (+, 0 𝑜 ) 𝑇 𝑀 = 𝑧 𝒕 𝐸

  18. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 𝑧 𝑧 (+, 0 𝑜 ) (+, 0 𝑜 ) 𝑇 𝑀 = 𝑧 𝒕 Outputs 1 iff 𝐸 𝑧 = 𝜌 𝑡 0 𝑜

  19. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 𝑧 𝑧 (+, 0 𝑜 ) (+, 0 𝑜 ) 𝑇 𝑀 = 𝑧 𝒕 1 with prob. 1 Outputs 1 iff 𝐸 𝑧 = 𝜌 𝑡 0 𝑜

  20. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 𝑧 𝑧 (+, 0 𝑜 ) (+, 0 𝑜 ) 𝑇 𝑀 = 𝑧 𝒕 1 with prob. 1 Outputs 1 iff 𝐸 𝑧 = 𝜌 𝑡 0 𝑜 with prob. 1/2 𝑜 1

  21. 𝑄 is 𝑞𝑡𝑄𝑆𝑄 -secure if ∀ PPT 𝑇, 𝐸 , … 𝑡 ← Gen(1 𝜇 ) 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 −1 𝜌 𝑡 /𝜌 𝑡 ≈ 𝑧 𝑧 (+, 0 𝑜 ) (+, 0 𝑜 ) 𝑇 𝑀 = 𝑧 𝒕 1 with prob. 1 Outputs 1 iff 𝐸 𝑧 = 𝜌 𝑡 0 𝑜 with prob. 1/2 𝑜 1 𝑞𝑡𝑄𝑆𝑄 -security is impossible against all sources!

  22. 𝑄 = (Gen, 𝜌, 𝜌 −1 ) Sources need to be restricted all sources

  23. 𝑄 = (Gen, 𝜌, 𝜌 −1 ) Sources need to be restricted all sources 𝒯

  24. 𝑄 = (Gen, 𝜌, 𝜌 −1 ) Sources need to be restricted 𝑡 ← Gen(1 𝜇 ) all sources 𝜍 ← Perms(𝑜) −1 𝜍/𝜍 −1 𝜌 𝑡 /𝜌 𝑡 𝒯 𝑇 𝑀 𝒕 𝐸 0/1 𝑄 is 𝑞𝑡𝑄𝑆𝑄[𝒯] -secure if ∀ 𝑇 ∈ 𝒯 and ∀ PPT 𝐸 , left and right are indistinguishable.

  25. This talk – unpredictable and reset-secure sources all sources

  26. This talk – unpredictable and reset-secure sources all sources 𝒯 𝑡𝑣𝑞 unpredictable

  27. This talk – unpredictable and reset-secure sources all sources reset-secure 𝒯 𝑡𝑠𝑡 𝒯 𝑡𝑣𝑞 unpredictable

  28. This talk – unpredictable and reset-secure sources all sources reset-secure 𝒯 𝑡𝑠𝑡 𝒯 𝑡𝑣𝑞 unpredictable Both restrictions model that 𝐸 cannot predict the queries made by the sources!

  29. This talk – unpredictable and reset-secure sources all sources reset-secure 𝒯 𝑡𝑠𝑡 𝒯 𝑡𝑣𝑞 unpredictable Both restrictions model that 𝐸 cannot predict the queries made by the sources! 𝒯 𝑡𝑣𝑞 ⊆ 𝒯 𝑡𝑠𝑡

  30. This talk – unpredictable and reset-secure sources all sources reset-secure 𝒯 𝑡𝑠𝑡 𝒯 𝑡𝑣𝑞 unpredictable Both restrictions model that 𝐸 cannot predict the queries made by the sources! 𝑞𝑡𝑄𝑆𝑄 𝒯 𝑡𝑠𝑡 is a stronger 𝒯 𝑡𝑣𝑞 ⊆ 𝒯 𝑡𝑠𝑡 ⟹ assumption than 𝑞𝑡𝑄𝑆𝑄 𝒯 𝑡𝑣𝑞

  31. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) 𝜍/𝜍 −1 𝑇 𝐵

  32. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) (𝜏, 𝑦 𝑗 ) 𝜏 ∈ {+, −} 𝜍/𝜍 −1 𝑇 𝐵

  33. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) (𝜏, 𝑦 𝑗 ) 𝜏 ∈ {+, −} 𝜍/𝜍 −1 𝑇 𝑅 ← 𝑅 ∪ { 𝜏, 𝑦 𝑗 , (𝜏 , 𝑧 𝑗 )} 𝐵

  34. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) (𝜏, 𝑦 𝑗 ) 𝜏 ∈ {+, −} 𝜍/𝜍 −1 𝑇 𝑧 𝑗 𝑅 ← 𝑅 ∪ { 𝜏, 𝑦 𝑗 , (𝜏 , 𝑧 𝑗 )} 𝐵

  35. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) (𝜏, 𝑦 𝑗 ) 𝜏 ∈ {+, −} 𝜍/𝜍 −1 𝑇 𝑧 𝑗 𝑅 ← 𝑅 ∪ { 𝜏, 𝑦 𝑗 , (𝜏 , 𝑧 𝑗 )} 𝑀 𝐵

  36. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) (𝜏, 𝑦 𝑗 ) 𝜏 ∈ {+, −} 𝜍/𝜍 −1 𝑇 𝑧 𝑗 𝑅 ← 𝑅 ∪ { 𝜏, 𝑦 𝑗 , (𝜏 , 𝑧 𝑗 )} 𝑀 It should be hard for 𝐵 to predict any of 𝑇 ’s queries or its inverse 𝐵 [ 𝑅 ′ ∩ 𝑅 ≠ 𝜚] = negl(𝜇) Pr 𝑅′

  37. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) (𝜏, 𝑦 𝑗 ) 𝜏 ∈ {+, −} 𝜍/𝜍 −1 𝑇 𝑧 𝑗 𝑅 ← 𝑅 ∪ { 𝜏, 𝑦 𝑗 , (𝜏 , 𝑧 𝑗 )} 𝑀 It should be hard for 𝐵 to predict any of 𝑇 ’s queries or its inverse 𝐵 [ 𝑅 ′ ∩ 𝑅 ≠ 𝜚] = negl(𝜇) Pr 𝑅′ 𝒯 𝑡𝑣𝑞 : 𝐵 is computationally unbounded ⊆ 𝒯 𝑑𝑣𝑞 : 𝐵 is PPT

  38. Source restrictions – unpredictability 𝜍 ← Perms(𝑜) (𝜏, 𝑦 𝑗 ) 𝜏 ∈ {+, −} 𝜍/𝜍 −1 𝑇 𝑧 𝑗 𝑅 ← 𝑅 ∪ { 𝜏, 𝑦 𝑗 , (𝜏 , 𝑧 𝑗 )} 𝑀 It should be hard for 𝐵 to predict any of 𝑇 ’s queries or its inverse 𝐵 [ 𝑅 ′ ∩ 𝑅 ≠ 𝜚] = negl(𝜇) Pr 𝑅′ 𝒯 𝑡𝑣𝑞 : 𝐵 is computationally unbounded ⊆ 𝑞𝑡𝑄𝑆𝑄[𝒯 𝑑𝑣𝑞 ] impossible if iO 𝒯 𝑑𝑣𝑞 : 𝐵 is PPT exists [BFM14]

  39. Source restrictions – reset-security

  40. Source restrictions – reset-security 𝜍/𝜍 −1 𝑇 𝜍 ← Perms(𝑜) 𝑆

  41. Source restrictions – reset-security 𝜍/𝜍 −1 𝑇 𝜍 ← Perms(𝑜) 𝑆

  42. Source restrictions – reset-security 𝜍/𝜍 −1 𝑇 𝜍 ← Perms(𝑜) 𝑀 𝜍/𝜍 −1 𝑆

  43. Source restrictions – reset-security 𝜍/𝜍 −1 𝑇 𝜍 ← Perms(𝑜) 𝑀 𝜍/𝜍 −1 𝑆 0/1

  44. Source restrictions – reset-security 𝜍/𝜍 −1 𝜍/𝜍 −1 𝑇 𝑇 𝜍 ← Perms(𝑜) 𝜍 ← Perms(𝑜) 𝑀 𝑀 𝜍/𝜍 −1 𝑆 𝑆 −1 𝜍 1 /𝜍 1 𝜍 1 ← Perms(𝑜) 0/1 0/1

  45. Source restrictions – reset-security 𝜍/𝜍 −1 𝜍/𝜍 −1 𝑇 𝑇 𝜍 ← Perms(𝑜) 𝜍 ← Perms(𝑜) ≈ 𝑀 𝑀 𝜍/𝜍 −1 𝑆 𝑆 −1 𝜍 1 /𝜍 1 𝜍 1 ← Perms(𝑜) 0/1 0/1

  46. Source restrictions – reset-security 𝜍/𝜍 −1 𝜍/𝜍 −1 𝑇 𝑇 𝜍 ← Perms(𝑜) 𝜍 ← Perms(𝑜) ≈ 𝑀 𝑀 𝜍/𝜍 −1 𝑆 𝑆 −1 𝜍 1 /𝜍 1 𝜍 1 ← Perms(𝑜) 0/1 0/1 𝒯 𝑡𝑠𝑡 : 𝑆 is computationally unbounded ⊆ 𝒯 𝑑𝑠𝑡 : 𝑆 is PPT

  47. Source restrictions – reset-security 𝜍/𝜍 −1 𝜍/𝜍 −1 𝑇 𝑇 𝜍 ← Perms(𝑜) 𝜍 ← Perms(𝑜) ≈ 𝑀 𝑀 𝜍/𝜍 −1 𝑆 𝑆 −1 𝜍 1 /𝜍 1 𝜍 1 ← Perms(𝑜) 0/1 0/1 𝒯 𝑡𝑠𝑡 : 𝑆 is computationally unbounded ⊆ 𝒯 𝑑𝑣𝑞 ⊆ 𝒯 𝑑𝑠𝑡 𝒯 𝑑𝑠𝑡 : 𝑆 is PPT

  48. Recap 𝑞𝑡𝑄𝑆𝑄[𝒯 𝑡𝑠𝑡 ] 𝑞𝑡𝑄𝑆𝑄[𝒯 𝑡𝑣𝑞 ]

  49. Recap 𝑞𝑡𝑄𝑆𝑄[𝒯 𝑡𝑠𝑡 ] 𝑞𝑡𝑄𝑆𝑄[𝒯 𝑡𝑣𝑞 ]

  50. Recap

  51. Recap Central assumption in UCE theory

  52. Recap Central assumption in UCE theory

  53. Roadmap 1.Definitions 2.Constructions & Applications 3.Conclusions

Recommend


More recommend