PROPHET INEQUALITIES Items β’ n values drawn independently from known distributions : X i βΌ F i π -ap approx means: E reward β₯ 1/Ξ± β E max X i β’ Ο -threshold mechanism: Take first item with X i β₯ Ο Irrevocably select one T HEOREM : The following give 2 -approximation X i βΌ F i β’ Median: Pr max X i β₯ Ο = 1/2 Samuel- Cahnβ84 β’ Kleinberg- Weinbergβ12 Ο = E max X i /2 Mean: β’ W HAT IF VALUES C ORRELATED ? arriving online β’ Ξ© n -approx Hill- Kertzβ92 β’ What about βmildβ correlations? 1 βProphet Inequalities with Linear Correlations and Augmentationsβ by Nicole Immorlica, Sahil Singla, and Bo Waggoner
Bateni-Dehghani-Hajighayi- Seddighinβ15 LINEAR CORRELATIONS MODEL Chawla-Malec- Sivanβ15 value of feature value of item m features β’ V ALUES X 1 Y 1 π β A β π Known matrix A β 0,1 nΓm and Y i βΌ F i for known distributions F i . n items A ij = degree to which item i exhibits feature j β’ A = identity matrix gives E.g., classical prophet inequality ( 0 β€ A ij β€ 1) β’ X n π π¬π©π± : row sparsity of A Y m β’ π ππ©π¦ : column sparsity of A drawn independently arriving online THM 2 (Multiple Items): Selecting r items THM 1 (Single Item): π°(π§π£π¨{π π¬π©π± , π ππ©π¦ }) approx β’ F OR π¬ β« π ππ©π¦ : (π + π© π ) approximation β’ F OR π¬ β« π π¬π©π± : π°(π π¬π©π± ) approximation 2
MAIN SUBPROBLEM positive βnoiseβ Augmentation Problem Think of X i βs = independent part + dependent part: X i = Z i + W i 1. Independent Can we recover E max Z i given only Z i distributions? Correlated with past 2. Note: Prophet inequality for W i = 0 Illustrative Example β’ +π X 1 drawn uniformly from [0,1] A FTER A DDING SOME X 2 is 10 4 w.p. 1/100 ; zero otherwise β’ P OSITIVE N OISE all the time Median threshold: Ο β 1/2 , picks X 1 half the time. Ο β 50 never picks X 1 . Mean threshold: A UGMENTATION L EMMA : Threshold Ο = E max Z i /2 guarantees π πππ π β₯ π π§ππ² π π£ /π 3
COLUMN SPARSITY Ο -threshold mechanisms have Ξ©(n) approximation THM (Single Item): π(π ππ©π¦ ) approximation Inclusion-Threshold Mechanism: Run Ο - threshold on a ``random subsetββ β’ Ignore each X i independently w.p. (1 β 1/s col ) Y 1 β’ Assign Y j to first surviving X i that contains it β’ Define Z i = Ο jβi A ij Y j and use Augmentation Lemma E max X i Proof Idea: Show E max Z i β eβ s col Y m Max X i survives with 1/s col probability 1. Pr[ Y j in Max X i assigned to Z i ] β₯ 1 β 1/s col s col β1 β 1/e 2. 4
Recommend
More recommend