properties of reductions of groups of rational numbers
play

Properties of Reductions of Groups of Rational Numbers History On - PowerPoint PPT Presentation

Artin Conjecture F. Pappalardi Properties of Reductions of Groups of Rational Numbers History On ArtinGau Conjeture facts abount period lengths Conference Artin Conjecture 2 nd International Conference of Mathematics and its


  1. Artin Conjecture F. Pappalardi Properties of Reductions of Groups of Rational Numbers History On Artin–Gauß Conjeture facts abount period lengths Conference Artin Conjecture 2 nd International Conference of Mathematics and its Lehmer’s entanglement factor Applications- ICMA Hooley’s result University of Basrah College of Science, October 23-24, 2013 the Quasi Resolution A new result Francesco Pappalardi Dipartimento di Matematica e Fisica Università Roma Tre 1

  2. Artin Conjecture History of Artin Conjecture F. Pappalardi Gauß question on lengths of periods What are the primes p s.t. 1 / p has length p − 1? History facts abount period For example: lengths 1 Artin Conjecture 7 = 0 . 142857, Lehmer’s 1 17 = 0 , 0588235294117647, entanglement factor 1 Hooley’s result 19 = 0 . 052631578947368421 , the Quasi Resolution . . . A new result 1 47 = 0 . 0212765957446808510638297872340425531914893617 First few primes with this property: 7 , 17 , 19 , 23 , 29 , 47 , 59 , 61 , 97 , 109 , 113 , 131 , 149 , 167 , 179 , 181 , 193 , . . . k p := length of the period of 1 / p k 3 = 1 , k 11 = 2 , k 13 = 6 , k 2 and k 5 are not defined 2

  3. Artin Conjecture Gauß question on lengths of periods F. Pappalardi The period–length of the fraction 1 / p is the least k s.t. 1 p = 0 . a 1 · · · a k = 0 . a 1 · · · a k a 1 · · · a k . . . History facts abount period lengths Artin Conjecture In other words Lehmer’s entanglement factor � a 1 � � 1 a k 1 1 � Hooley’s result = 10 + · · · + × 1 + 10 k + 10 2 k + · · · 10 k + 1 p the Quasi Resolution A new result M = 10 k − 1 Hence M × p = 10 k − 1 So k p is the least integer such that 10 k − 1 is divisible by p ! 3

  4. Artin Conjecture Algebraic properties of period lengths F. Pappalardi • The period length k p of 1 / p is the least integer such that History 10 k − 1 is divisible by p facts abount period lengths • Fermat Little Theorem says that 10 p − 1 − 1 is divisible by p Artin Conjecture Lehmer’s • So k p ≤ p − 1 entanglement factor Hooley’s result • Indeed it is not hard to show k p is a divisor of p − 1 the Quasi Resolution • Sometimes the period is small: A new result 1 / 1111111111111111111 = 0 , 0000000000000000009 • most of the times k p > √ p not obvious! • Gauß in particular asked what are the frequencies of periods 4

  5. Artin Conjecture Some statistics on period lengths: F. Pappalardi Let k p be the period length of 1 / p . The following table contains δ m = { p < 2 31 : k p = p − 1 m } History # { p ≤ 2 31 } facts abount period lengths for m = 1 , . . . , 40. Artin Conjecture Lehmer’s m 1 2 3 4 5 6 7 entanglement factor δ m 0.37393 0.28047 0.06649 0.07133 0.01890 0.04986 0.00893 Hooley’s result m 8 9 10 11 12 13 14 the Quasi Resolution δ m 0.01660 0.00739 0.01416 0.00340 0.01268 0.00240 0.00669 A new result m 15 16 17 18 18 20 21 δ m 0.00335 0.00415 0.00136 0.00553 0.00109 0.00235 0.00158 m 22 23 24 25 26 27 28 δ m 0.00255 0.00073 0.00294 0.00075 0.00180 0.00081 0.00171 m 29 30 31 32 33 34 35 δ m 0.00046 0.00251 0.00039 0.00103 0.00060 0.00103 0.00044 Note 2 , 94 % of primes p ≤ 2 31 have period k p = p − 1 with m > 35 m 5

  6. Artin Conjecture More algebraic properties of period lengths F. Pappalardi • Period are also defined with respect to any base a ∈ N • The period length of 1 / p in base a is the least k p ( a ) such that a k − 1 is divisile by p (a divisor of p − 1) History • It is not difficult to see that: facts abount period lengths the period length k p ( a ) = p − 1 if and only if the set Artin Conjecture Lehmer’s { a j : j = 1 , . . . , p − 1 } entanglement factor Hooley’s result the Quasi Resolution contains p − 1 distinct elements modulo p A new result • in other words the period length k p ( a ) = p − 1 if and only if p is not a divisor of a s − a r ∀ r , s : 1 ≤ r < s ≤ p − 1 • we express that condition writing � a mod p � = F ∗ or also # � a mod p � = p − 1 p • If the period length in base a of 1 / p is p − 1 (i.e. k p ( a ) = p − 1), we say that a is a primitive root modulo p 6

  7. Artin Conjecture Algebraic properties of period lengths F. Pappalardi from period lengths to primitive roots • So a is a primitive root modulo p if and only if � a mod p � = F ∗ p History (i.e. if there are p − 1 distinct powers of a modulo p ) facts abount period lengths • It is not hard to check that if p is a divisor of a , then 1 / p is Artin Conjecture a finite expansion in base a . Lehmer’s entanglement factor • for example 1 / 2 = 0 . 5 1 / 5 = 0 . 2 in decimal base and Hooley’s result 1 / 10 = 0 . 1 in binary base the Quasi Resolution • the condition a is a primitive root modulo p makes sense A new result also when a is a rational number and p does not divide numerator and denominator of a (i.e. v p ( a ) = 0) • a is a primitive root modulo p iff ∀ primes ℓ that divide p − 1 , p does not divide a ( p − 1 ) /ℓ − 1 • This is the base for Artin intuition on the Primitive Roots Conjecture 7

  8. Artin Conjecture Artin Conjecture (1927) F. Pappalardi Note Heuristically, the probability that a prime ℓ is such that both 1 ℓ divides p − 1 2 p divides a ( p − 1 ) /ℓ − 1 History facts abount period lengths are satisfied is 1 /ℓ ( ℓ − 1 ) . Hence the probability that a ( p − 1 ) /ℓ − 1 is not divisible by p for Artin Conjecture Lehmer’s all primes ℓ dividing p − 1 is entanglement factor Hooley’s result � � 1 the Quasi Resolution � A = 1 − = 0 , 373955 . . . A new result ℓ ( ℓ − 1 ) ℓ ≤ 2 Definition ( A is called the Artin constant ) Conjecture # { p ≤ x : p � = 2 , 5 , � 10 mod p � = F ∗ p } lim x →∞ = A # { p ≤ x } What if instead of 10 we consider a ∈ Z \ {− 1 , 0 , 1 } ? 8

  9. Artin Conjecture Artin Conjecture (1927) F. Pappalardi History facts abount period lengths Artin Conjecture Lehmer’s entanglement factor Hooley’s result the Quasi Resolution A new result Emil Artin (March 3, 1898 - December 20, 1962) Conjecture (Artin Conjecture – first version) {− 1 , 0 , 1 } ∪ { b 2 : b ∈ Q } � � If a ∈ Q \ , then # { p ≤ x : v p ( a ) = 0 , � a mod p � = F ∗ p } ∼ A π ( x ) 1 � here π ( x ) = # { p ≤ x } and A = 1 − ℓ ( ℓ − 1 ) = 0 , 37395 . . . ℓ ≤ 2 9

  10. Artin Conjecture Some numerical tests for Artin Conjecture F. Pappalardi Let S a = { p ≤ 2 29 : � a mod p � = F ∗ d a = # S a /π ( 2 29 ) p } , History Note that π ( 2 29 ) = 28192750 and A = 0 , 373955 . . . . facts abount period lengths Artin Conjecture a S a d a a S a d a Lehmer’s -15 10432805 0.37005 2 10543421 0.37397 entanglement factor -14 10543340 0.37397 3 10543631 0.37398 Hooley’s result -13 10542796 0.37395 5 11098098 0.39365 -12 12653339 0.44881 6 10543607 0.37398 the Quasi Resolution -11 10639090 0.37736 7 10544579 0.37401 A new result -10 10543135 0.37396 8 6325893 0.22438 -9 10542743 0.37395 10 10542876 0.37395 -8 6325704 0.22437 11 10542933 0.37395 -7 10799148 0.38304 12 10545029 0.37403 -6 10543575 0.37398 13 10611720 0.37639 -5 10542080 0.37392 14 10542946 0.37395 -4 10543032 0.37396 15 10544134 0.37400 -3 12651353 0.44874 17 10582932 0.37537 -2 10542194 0.37393 18 10545385 0.37404 Not always so totally convincing evidence! Not convincing for a ∈ {− 15 , − 12 , − 11 , − 8 , − 7 , − 3 , 5 , 8 , 13 , 17 } 10

  11. Artin Conjecture Artin Conjecture F. Pappalardi Lehmer’s correction History facts abount period lengths Artin Conjecture Lehmer’s entanglement factor Hooley’s result Derrick Henry Lehmer (Feb 1905 - May 1991) the Quasi Resolution A new result Remark (Lehmer’s Remark) The probabilities that, given two primes ℓ 1 and ℓ 2 , a prime p is such that 1 ℓ i divides p − 1 2 p divides a ( p − 1 ) /ℓ i − 1 for i = 1 , 2 are not always independent!! So there is the need for a correction factor (the entanglement factor ) 11

  12. Artin Conjecture Artin Conjecture F. Pappalardi after Lehmer’s correction Conjecture (Artin Conjecture – final form) Let a ∈ Q ∗ \ { 1 , − 1 } , then p − 1 = # � a mod p � for a proportion of primes δ a where History facts abount period lengths δ a = r a × t a , Artin Conjecture where if h = max { j : a = b j , b ∈ Q } , ∂ ( a ) = disc ( Q ( √ a )) , Lehmer’s entanglement factor Hooley’s result � 1 − gcd ( h , ℓ ) � the Quasi Resolution � t a = A new result ℓ ( ℓ − 1 ) ℓ ≥ 2 and r a = 1 unless if ∂ ( a ) is odd in which case: − 1 r a = 1 − � ℓ | ∂ ( a ) ℓ ( ℓ − 1 ) / gcd ( ℓ, h ) − 1 Note that • t a is a rational multiple of the Artin Constant A • δ a = 0 iff a is a perfect square • ∂ ( a ) is easy but technical to define 12

  13. Artin Conjecture Artin Conjecture F. Pappalardi Effect of the Lehmer entanglement We were not convinced for a ∈ {− 15 , − 12 , − 11 , − 8 , − 7 , − 3 , 5 , 8 , 13 , 17 } History facts abount period lengths a δ a d a Artin Conjecture -15 0.37001 0.37005 Lehmer’s -12 0.44875 0.44881 entanglement factor -11 0.37709 0.37736 Hooley’s result the Quasi Resolution -8 0.22437 0.22437 A new result -7 0.38308 0.38304 -3 0.44875 0.44874 5 0.39363 0.39365 8 0.22437 0.22438 13 0.37636 0.37639 17 0.37533 0.37537 For all other values of a in the previous table, δ a = A 13

Recommend


More recommend