prethermalization and nonthermal fixed point in the
play

Prethermalization and nonthermal fixed point in the Hubbard model 8 - PowerPoint PPT Presentation

Prethermalization and nonthermal fixed point in the Hubbard model 8 Dec 2013 @ Kyoto Naoto Tsuji (University of Tokyo) Acknowledgments University of Fribourg University of Tokyo Philipp Werner Hideo Aoki Takashi Oka University of


  1. Prethermalization and nonthermal fixed point in the Hubbard model 8 Dec 2013 @ Kyoto Naoto Tsuji (University of Tokyo)

  2. Acknowledgments University of Fribourg University of Tokyo Philipp Werner Hideo Aoki Takashi Oka University of Hamburg-CFEL University of Augsburg Martin Eckstein Marcus Kollar University of Geneva Peter Barmettler This talk is based on: Tsuji, Eckstein, Werner, Phys. Rev. Lett. 110, 136404 (2013). Tsuji, Werner, Phys. Rev. B 88, 125126 (2013). Werner, Tsuji, Eckstein, Phys. Rev. B 86, 205101 (2012). Aoki, Tsuji, Eckstein, Kollar, Oka, Werner, arXiv:1310.5329 (review). Tsuji, Barmettler, Aoki, Werner, arXiv:1307.5946.

  3. Outline “How” and “in which time scale” does an isolated quantum many-body system thermalize? 1. Prethermalization in the Hubbard model (overview) 2. Nonthermal fixed point in the Hubbard model 3. Universality of the nonthermal fixed point

  4. Hubbard model J i j c † c † i ↑ c i ↑ c † � � H ( t ) = i σ c j σ + U i ↓ c i ↓ i j σ i ➤ DMFT (d= ∞ ) phase diagram at half filling. 0.30 0.30 paramagnetic phase 0.25 0.25 0.20 0.20 J i j insulator 0.15 0.15 T T metal 0.10 0.10 U antiferromagnetic Mott transition 0.05 0.05 phase 0.00 0.00 0 0 2 2 4 4 6 6 8 8 U U

  5. Hubbard model J i j c † c † i ↑ c i ↑ c † � � H ( t ) = i σ c j σ + U i ↓ c i ↓ i j σ i ➤ Possible phase diagram in “two dimensions”. “pseudogap phase” temperature d-wave superconductivity antiferromagnetic Mott insulator density half filling

  6. Interaction quench ➤ An abrupt change of the interaction parameter in an isolated quantum system. ➤ Experimentally realized in cold-atom systems: by changing the optical lattice potential depth or by using Feshbach resonance. Greiner, et al., Nature (2002), Bloch, Dalibard, Zwerger, RMP (2008).

  7. Nonequilibrium DMFT Schmidt, Monien (2002), Freericks, Turkowski, Zlati ć (2006), Aoki, Tsuji et al., arXiv:1310.5329. Λ ( t , t � ) t � t Lattice model Impurity model DMFT self-consistency G latt loc ( t , t � ) ≡ G imp [ Λ ]( t , t � ) 1 impurity solver � G latt loc = (QMC, IPT, NCA, ED, ...) i � t + µ − � k − Σ latt k k DMFT approximation Σ latt k ( t , t � ) ≡ Σ imp ( t , t � ) ➤ DMFT scheme becomes exact in d →∞ limit of lattice models. Metzner, Volhardt (1989).

  8. Prethermalization in d= ∞ ➤ d (t)= ⟨ n ↑ n ↓ ⟩ ¡ : the double occupancy → “mode-integrated” ➤ n ( ϵ k , t )= ⟨ c k † ( t ) c k ( t ) ⟩ : the full momentum distribution → “mode-resolved” 1 0.25 a U=0.5 a) U=2 U=0.5 0.8 U=1 n( ε ,t) n( ε ,t) U=1 0.21 U=1.5 1 U=1.5 0.6 ∆ n(t) d(t) 0.17 U=2 U=2 0.4 0.5 -2 U=2.5 U=2.5 0.13 -1 0.2 0 0 c U=3 ε 1 U=3 1 2 3 4 0 0 2 t 5 0 1 2 3 4 0 0 1 2 3 4 0 Eckstein, Kollar, Werner, PRB (2010). t t Eckstein, Kollar, Werner, PRL (2009).

  9. Prethermalization in d= ∞ 1 0.9 0.8 0.7 0.6 � n 0.5 0.4 0.3 Short-time approx. � 0.2 DMFT Quantum Boltzmann 0.1 GGE 0.1 1 10 t Short-time approx. Short-time approximation: Moeckel, Kehrein, PRL (2008) DMFT Nonequilibrium DMFT : Aoki, Tsuji et al., arXiv:1310.5329. Quantum Boltzmann Quantum Boltzmann equation: Stark, Kollar, arXiv:1308.1610 GGE Generalized Gibbs ensemble (GGE): Kollar, Wolf, Eckstein, PRB (2011)

  10. Generalized Gibbs ensemble (GGE) Kollar, Wolf, Eckstein, PRB (2011) ➤ Weak interaction: ➤ Approximate constants of motion: � c † 2 V ���� c † � c � c � + h . c . � + O ( g 2 ) n � = n � + g ˜ � � + � � − � � − � � ��� ➤ Construct GGE with them: � � ! � with � ˜ n α � � = � ˜ n α � 0 GGE ∝ exp λ α ˜ ρ � − n α GGE α ➤ Prethermalization plateau is described by GGE: GGE = � n α � pretherm + O ( g 3 ) � n α � �

  11. Prethermalization in d=1 and 2 Tsuji, Barmettler, Aoki, Werner, arXiv:1307.5946. ➤ d=1, U/J=0 → 1 ➤ d=2, U/J=0 → 2 0.25 0.25 0.24 � a � 0.24 � a � DMFT DCA � Nc � 2 � 2 � 0.23 � � 2 � 0.23 DCA � Nc � 4 � 4 � 0.22 0.22 DCA � Nc � 8 � 8 � � n � n � � � n � n � � 0.21 0.21 DCA � Nc � 16 � 16 � DCA � Nc � 2 � 0.20 0.20 DMRG DCA � Nc � 4 � 0.19 0.19 � � 2 � DCA � Nc � 8 � 0.18 0.18 DMFT DCA � Nc � 16 � 0 2 4 6 8 10 0 1 2 3 4 5 1.00 1.0 � � 2 � � b � 0.98 DCA � Nc � 64 � � b � 0.9 � Π � 2, Π � 2 � DMFT 0.96 0.8 0.94 � n � n 0.7 0.92 � Π , 0 � 0.6 0.90 DCA � Nc � 8 � 8 � 0.88 0.5 DCA � Nc � 16 � 16 � 0.86 0.4 0 2 4 6 8 10 0 1 2 3 4 5 tJ tJ

  12. Relaxation and Prethermalization in an Isolated Quantum System Science 337, 1318 (2012) M. Gring, 1 M. Kuhnert, 1 T. Langen, 1 T. Kitagawa, 2 B. Rauer, 1 M. Schreitl, 1 I. Mazets, 1,3 D. Adu Smith, 1 E. Demler, 2 J. Schmiedmayer 1,4 *

  13. Dynamical transition in d= ∞ ➤ Sharp change of the relaxation behavoir between weak- and strong-coupling regimes. 0.25 fast thermalization a 0.2 b U=0.5 b) U=3.3 U=8 U=1 d n( ε ,t) n( ε ,t) 0.21 d med d th 0.1 1 U=1.5 d(t) 4 6 8 U 0.17 U=6 U=2 0.5 U=5 U=2.5 -2 0.13 U=4 -1 U=3 U=3.3 0 0 1 1 ε 2 3 4 1 2 t 5 d U=0.5 2 π / U oscillation 0.8 c) U=5 U=1 U=1.5 U=8 n( ε ,t) n( ε ,t) 0.6 ∆ n(t) U=6 1 U=2 U=5 0.4 U=2.5 U=4 0.5 0.2 c U=3.3 U=3 -2 0 -1 0 1 2 3 4 0 1 2 3 0 0 0.5 1 ε 1 t t 1.5 2 2.5 2 3 t Eckstein, Kollar, Werner (2009, 2010).

  14. Thermalization w/ long-range order ➤ How does the fermionic condensed-matter system prethermalize and thermalize after the interaction quench in the presence of a long-range order (classical fluctuations)? ➤ The order parameter dynamics has been described by a macroscopic (sometimes phenomenological) Ginzburg-Landau equation, � Γ ∂ m ∂ t = δ F GL c = am + bm 3 � 2 M � 2 m δ m ➤ Validity of the equation: quasiparticle thermalization order parameter

  15. Hubbard model with AFM ➤ Interaction quench in the Hubbard model with AFM order: J i j c † c † i ↑ c i ↑ c † � � H ( t ) = i σ c j σ + U ( t ) i ↓ c i ↓ i j σ i 0.30 0.25 paramagnetic phase 0.20 J i j 0.15 T 0.10 “Heisenberg” antiferromagnetic 0.05 phase “Slater” 0.00 0 2 4 6 8 U

  16. Quench: AFM → PM Tsuji, Eckstein, Werner, PRL (2013) 0.4 ➤ : AFM order parameter m ( t ) = � | n i ↑ ( t ) � n i ↓ ( t ) | � : Higgs amplitude mode ω ≈ 2 ∆ ➤ The initial U i is fixed. 0.3 ➤ The final U f (< U i ) is systematically changed. m H t L 0.2 0.14 0.12 0.10 0.1 0.08 T 0.06 0.04 0.02 0.0 0.00 0 50 100 150 200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t U U i = 2 . 0 , U f = 1 . 0 , 1 . 1 , . . . , 1 . 9

  17. week ending P H Y S I C A L R E V I E W L E T T E R S PRL 111, 057002 (2013) 2 AUGUST 2013 Higgs Amplitude Mode in the BCS Superconductors Nb 1 - x Ti x N Induced by Terahertz Pulse Excitation Ryusuke Matsunaga, 1 Yuki I. Hamada, 1 Kazumasa Makise, 2 Yoshinori Uzawa, 3 Hirotaka Terai, 2 Zhen Wang, 2 and Ryo Shimano 1 1 Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan 2 National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492, Japan 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan (Received 2 May 2013; published 29 July 2013) 0.8 (a) pump / =0.57 τ τ (a) 0.6 (b) f (THz) E probe ( t gate = t 0 ) (arb. units) 0.4 2 nJ/cm 1 9.6 0.2 8.5 7.9 f 7.2 2 6.4 0.0 Im 5.6 Re 3 4.8 (c) 4.0 2 b ➤ Higgs mode 1 0 0 ➤ Nambu-Goldstone mode 5 10 -4 -2 0 2 4 6 8 t pp (ps) Pump Energy (nJ/cm 2 )

  18. Two step relaxation ➤ Relaxation crossovers from the nonthermal critical behavior in the intermediate time scale to the thermal critical behavior in the long time scale. Tsuji, Eckstein, Werner, PRL (2013) 0.4 � a � U i � 2.5 10 � 1 thermal critical 0.3 behavior 10 � 2 e � t � Τ deph 10 � 3 τ nth m ( t ) Φ ( t ) m H t L 0.2 m 10 � 4 nonth. critical 0.1 10 � 5 e � t � Τ th behavior 10 � 6 0.0 0 50 100 150 0 50 100 150 200 t t U i = 2 . 5 , U f = 1 . 6 , 1 . 7 , 1 . 8 , 1 . 9

  19. Nonthermal criticality Tsuji, Eckstein, Werner, PRL (2013) 0.3 0.6 U i = 2 F th w ω t nth - 1 0.2 0.4 τ − 1 w , t - 1 th τ − 1 F nth m 0.1 0.2 m th U c 0 0 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 U f t nth - 1 : Nonthermal relaxation time. : Frequency of the Higgs mode. w : Thermal value of the order parameter. F th m th

  20. This implies... nonthermal ordered state 0.14 Nonthermal 0.12 (quasi)critical point! 0.10 0.08 T 0.06 0.04 thermal critical point 0.02 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 U

  21. Momentum distribution n k = 1 � k n k ( t ) = N − 1 � e i k · ( R i − R j ) � c † cf. T =0 static mean-field: i σ ( t ) c j σ ( t ) � 2 − � � 2 k + ∆ 2 2 ij ∼ � − 2 ( � k → ∞ ) k U i = 2 → U f = 1 . 4 ➤ The momentum distribution shows a power-law decay: (in this case) : non-universal?

Recommend


More recommend