prelude
play

Prelude A.H. Chamseddine, A. Connes, Clifford Structures in - PowerPoint PPT Presentation

Prelude A.H. Chamseddine, A. Connes, Clifford Structures in Noncommutative Geometry The Spectral Action Principle , and The Standard Model of Particle Physics Commun. Math. Phys. 186 (1997), 731750. The noncommutative geometry approach to


  1. Prelude A.H. Chamseddine, A. Connes, Clifford Structures in Noncommutative Geometry The Spectral Action Principle , and The Standard Model of Particle Physics Commun. Math. Phys. 186 (1997), 731–750. The noncommutative geometry approach to particle physics: algebraic reformulation of Francesco D’Andrea (quantum) field theory that works for spaces described by noncommutative algebras too. 19/09/2017 Following the “philosophical” or “meta-mathematical” point of view that: • C ∗ -algebras are a generalization of (locally compact, Hausdorff) topological spaces; • C ∗ -algebras with additional structure are a generalization of manifolds (smooth, Geometry and Physics Seminar, Riemannian, spin, etc.) Penn State University, 19 September 2017 1 / 21 Prelude Punchline “A theory is a black box that we can shake to make predictions of physical observables.” [ particlephd.wordpress.com ] A , H , D / G , H , L Two main goals: G , H , L � derive the Standard Model (the complicated Lagrangian) from simple geometric data; � � get some clues on unification with gravity. � A , H , D Advantages: A , H , D / L L / • The Lagrangian is not postulated but derived from the theory; • One gets for free the Higgs field (in the Standard Model case). . . ◮ Classical Yang-Mills Theory: G = Lie group, H = Hilbert space, L = Lagrangian • . . . and a theory coupled with (classical) gravity. ◮ Noncommutative Geometry: A = C ∗ -algebra, H = Hilbert space, D / = Dirac operator 1 / 21 2 / 21

  2. The Lagrangian of the Standard Model Instructions: how to shake the red box L SM = − 1 ν − 1 µ − 1 1 µ − 1 2 ∂ ν g a µ ∂ ν g a µ − g s f abc ∂ µ g a ν g b µ g c 4 g 2 s f abc f ade g b µ g c ν g d µ g e ν − ∂ ν W + µ ∂ ν W − µ − M 2 W + µ W − 2 ∂ ν Z 0 µ ∂ ν Z 0 M 2 Z 0 µ Z 0 2 ∂ µ A ν ∂ µ A ν − igc w ( ∂ ν Z 0 µ ( W + µ W − ν − W + ν W − µ − µ ) 2 c 2 w µ )) − 1 Mathematical Physics Studies − Z 0 ν ( W + µ ∂ ν W − µ − W − µ ∂ ν W + µ ) + Z 0 µ ( W + ν ∂ ν W − µ − W − ν ∂ ν W + µ )) − igs w ( ∂ ν A µ ( W + µ W − ν − W + ν W − µ ) − A ν ( W + µ ∂ ν W − µ − W − µ ∂ ν W + µ ) + A µ ( W + ν ∂ ν W − µ − W − ν ∂ ν W + 2 g 2 W + µ W − µ W + ν W − ν + 1 ν ) − 1 2 g 2 W + µ W − ν W + µ W − ν + g 2 c 2 w ( Z 0 µ W + µ Z 0 ν W − ν − Z 0 µ Z 0 µ W + ν W − ν ) + g 2 s 2 w ( A µ W + µ A ν W − ν − A µ A µ W + ν W − ν ) + g 2 s w c w ( A µ Z 0 ν ( W + µ W − ν − W + ν W − µ ) − 2 A µ Z 0 µ W + ν W − 2 ∂ µ H∂ µ H − 2 M 2 α h H 2 − ∂ µ φ + ∂ µ φ − − 1 � 2 M 2 + 2 M g H + 1 � + 2 M 4 − 1 2 ∂ µ φ 0 ∂ µ φ 0 − β h 2 ( H 2 + φ 0 φ 0 + 2 φ + φ − ) H 3 + Hφ 0 φ 0 + 2 Hφ + φ − � H 4 + ( φ 0 ) 4 + 4 ( φ + φ − ) 2 g 2 α h − gα h M � 8 g 2 α h � g 2 Walter D. van Suijlekom µ H − 1 2 g M µ H − 1 + 1 + 4 ( φ 0 ) 2 φ + φ − + 4 H 2 φ + φ − + 2 ( φ 0 ) 2 H 2 � µ ( φ 0 ∂ µ φ − − φ − ∂ µ φ 0 ) − W − µ ( φ 0 ∂ µ φ + − φ + ∂ µ φ 0 ) µ ( H∂ µ φ − − φ − ∂ µ H ) − gMW + µ W − W + W + Z 0 µ Z 0 2 ig � � 2 g � c 2 w Noncommutative + 1 2 g 1 µ ( H∂ µ φ 0 − φ 0 ∂ µ H ) + M ( 1 µ ∂ µ φ + ) − igs 2 µ ( H∂ µ φ + − φ + ∂ µ H ) µ ∂ µ φ 0 + W + µ ∂ µ φ − + W − µ φ − − W − µ φ − − W − + W − � ( Z 0 Z 0 w MZ 0 µ ( W + µ φ + ) + igs w MA µ ( W + µ φ + ) c w c w c w Geometry and − ig 1 − 2 c 2 µ ( φ + ∂ µ φ − − φ − ∂ µ φ + ) + igs w A µ ( φ + ∂ µ φ − − φ − ∂ µ φ + ) − 1 − 1 8 g 2 1 H 2 + ( φ 0 ) 2 + 2 φ + φ − � H 2 + ( φ 0 ) 2 + 2 ( 2 s 2 w 4 g 2 W + µ W − w − 1 ) 2 φ + φ − � Z 0 � Z 0 µ Z 0 � µ µ 2 c w c 2 Particle Physics w − 1 2 g 2 s 2 µ φ + ) − 1 2 ig 2 s 2 µ φ + ) + 1 µ φ + ) + 1 µ φ + ) − g 2 s w µ φ − + W − µ φ − − W − µ φ − + W − µ φ − − W − w Z 0 µ φ 0 ( W + w Z 0 µ H ( W + 2 g 2 s w A µ φ 0 ( W + 2 ig 2 s w A µ H ( W + ( 2 c 2 w − 1 ) Z 0 µ A µ φ + φ − c w c w c w w A µ A µ φ + φ − + 1 � e λ γ µ e λ ) + 2 j ) − 1 � e ) e λ − ¯ ν ) ν λ − ¯ − g 2 s 2 2 ig s λ a q σ i γ µ q σ j ) g a e λ ( γ∂ + m λ ν λ ( γ∂ + m λ u λ j ( γ∂ + m λ u ) u λ j − ¯ d λ j ( γ∂ + m λ d ) d λ u λ j γ µ u λ 3 ( ¯ d λ j γ µ d λ ij ( ¯ µ − ¯ j + igs w A µ −( ¯ 3 ( ¯ j ) + ig j γ µ ( 4 j γ µ ( 1 − 8 j ) } + ig Z 0 ν λ γ µ ( 1 + γ 5 ) ν λ ) + ( ¯ e λ γ µ ( 4 s 2 w − 1 − γ 5 ) e λ ) + ( ¯ d λ 3 s 2 w − 1 − γ 5 ) d λ u λ 3 s 2 w + γ 5 ) u λ 2 W + � ν λ γ µ ( 1 + γ 5 ) U lep λκ e κ ) + ( ¯ u λ j γ µ ( 1 + γ 5 ) C λκ d κ � µ { ( ¯ j ) + ( ¯ √ ( ¯ j ) µ 4 c w 2 + ig ig ig � � 2 φ − � e κ U lep † κλ γ µ ( 1 + γ 5 ) ν λ ) + ( ¯ j C † e λ U lep † √ 2 W − ( ¯ d κ κλ γ µ ( 1 + γ 5 ) u λ j ) + √ 2 φ + � − m κ e ( ¯ ν λ U lep λκ ( 1 − γ 5 ) e κ ) + m λ ν ( ¯ ν λ U lep λκ ( 1 + γ 5 ) e κ � + √ m λ e ( ¯ λκ ( 1 + γ 5 ) ν κ ) µ 2 2 M 2 M m λ m λ m λ m λ − g ν λ ν λ ) − g e λ e λ ) + ig ν λ γ 5 ν λ ) − ig e λ γ 5 e λ ) − 1 ν κ − 1 e λ U lep † λκ ( 1 − γ 5 ) ν κ � − m κ ν e M φ 0 ( ¯ ν M φ 0 ( ¯ e ν λ M R ν λ M R ν ( ¯ M H ( ¯ M H ( ¯ 4 ¯ λκ ( 1 − γ 5 ) ˆ 4 ¯ λκ ( 1 − γ 5 ) ˆ ν κ 2 2 2 2 m λ m λ ig ig − g j ) − g 2 φ − � � 2 φ + � − m κ u λ j C λκ ( 1 − γ 5 ) d κ j ) + m λ u λ j C λκ ( 1 + γ 5 ) d κ � m λ d ( ¯ d λ j C † λκ ( 1 + γ 5 ) u κ j ) − m κ u ( ¯ d λ j C † λκ ( 1 − γ 5 ) u κ u u λ j u λ M H ( ¯ d d λ j d λ + √ d ( ¯ u ( ¯ + √ M H ( ¯ j ) j j 2 2 2 M 2 M + ig m λ j ) − ig m λ u M φ 0 ( ¯ M φ 0 ( ¯ u λ j γ 5 u λ d d λ j γ 5 d λ j ) 2 2 ( Chapter 12 → Phenomenology ) Lagrangian of the Standard Model with neutrino mixing and Majorana mass terms (Minkowski space, Feynman gauge fixing). M. Veltman, Diagrammatica: the path to Feynman diagrams , Cambridge Univ. Press, 1994. 3 / 21 4 / 21 Outline of the Talk Toolkit for Yang-Mills Theory Classical (i.e. before 2nd quantization) Euclidean gauge theory: Toolkit for Yang-Mills Theory 1 1 A complex Hilbert space H , typically: “Historical” background: 2 ψ v ◮ Grand Unified Theory (GUT) [ by Howard Georgi and Sheldon Glashow – 1974 ] ∈ ∈ L 2 ( M , E ) H = ⊗ V ◮ KK-theory [ Theodor K aluza – 1921, Oskar K lein – 1926 ] � �� �  sections of � ◮ Particle models and noncommutative geometry cpx vector bundle finite E → M dim. v.s. [ Alain Connes – 1996: “Gravity coupled with matter Usual QM interpretation: ψ = probability amplitude; and foundation of non-commutative geometry”, v = internal degrees of freedom (spin, charge, etc.) with John Lott – 1991, with Ali Chamseddine – since 1996 ] Remark: in the Standard Model, rk ( E ) = 4 (spinor bundle on a 4 -dim. manifold). The spin degree of freedom is counted twice (in E and in V ), cf. fermion doubling : Clifford Structures in Noncommutative Geometry and Morita Equivalence 3 F . Lizzi, G. Mangano, G. Miele, G. Sparano, Phys. Rev. D 55 (1997), 6357–6366. [ joint with Ludwik Dabrowski and Andrzej Sitarz ] Another doubling is typical of Euclidean field theories and is cured after Wick rotation, cf. F . D’Andrea, M. Kurkov and F . Lizzi, Phys. Rev. D 94, 025030 (2016). 5 / 21 6 / 21

Recommend


More recommend