precipitation of nb in ferrite after austenite
play

Precipitation of Nb in ferrite after austenite conditioning I. - PowerPoint PPT Presentation

Precipitation of Nb in ferrite after austenite conditioning I. Gutierrez, A. Iza-Mendia, A. Altuna, B. Pereda CEIT and Tecnun (University of Navarra), Manuel de Lardizbal 15, 20018 Donostia-San Sebastin Spain the other co-authors Amaia


  1. Precipitation of Nb in ferrite after austenite conditioning I. Gutierrez, A. Iza-Mendia, A. Altuna, B. Pereda CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 Donostia-San Sebastián Spain

  2. the other co-authors Amaia Iza-Mendia Alazne Altuna Beatriz Pereda

  3. CEIT is a non profit Research Centre working in partnership with the University of Navarra Donostia-San Sebastian www. ceit .es www. tecnun .es

  4. INTRODUCTION Strip hot rolling mill Reheating Hot rolling Run-out Coiling table The hot rolling mill transforms as-cast steel into finished or semifinished products it can be considered as a tool for getting tailored combinations of mechanical properties

  5. INTRODUCTION Strip hot rolling mill Reheating Hot rolling Run-out Coiling table The main role of Nb microalloying is the control of the austenite microstructure in the hot rolling mill Nb: Ferrite grain • Austenite conditioning - Solute drag refinement - Precipitation

  6. INTRODUCTION Strip hot rolling mill Reheating Hot rolling Run-out Coiling table Over the last 30 years most of the research on Nb microalloyed steels has concentrated on the hot rolling mill

  7. INTRODUCTION S Vervynckt et al. International Materials Review, 2012 Higher requirements in terms of mechanical property at minimum cost Need for process and additions optimisation

  8. INTRODUCTION Reheating 1400 1200 1000 Temperature 800 600 Nb solubility in 400 austenite 200 0 0 50 100 150 200 250 300

  9. INTRODUCTION Reheating Hot rolling 1400 1200 1000 Temperature 800 600 400 Nb in solution 200 0 0 50 100 150 200 250 300

  10. INTRODUCTION Reheating Hot rolling 1400 1200 1000 Temperature 800 600 400 Nb in solution 200 0 0 50 100 150 200 250 300

  11. INTRODUCTION Reheating Hot rolling Run-out 1400 table 1200 1000 Temperature Strain induced precipitation 800 600 400 Nb in solution 200 0 0 50 100 150 200 250 300

  12. INTRODUCTION Reheating Hot rolling Run-out 1400 table 1200 1000 Temperature 800 Coiling 600 400 Nb in solution 200 0 0 50 100 150 200 250 300

  13. INTRODUCTION Strip hot rolling mill Reheating Hot rolling Run-out Coiling table Focus: extra strengthening associated with Nb above that expected from grain refinement

  14. INTRODUCTION • Interphase precipitation Nb in solution • Homogeneous precipitation after austenite • Cluster formation conditioning • Hardenability (transformation dislocations) Complex interactions, depending on Nb free and cooling strategies

  15. INTRODUCTION “ There is still a certain disagreement with regard to the morphology of the precipitates” “There is no definite answer to the question whether precipitation of Nb carbides significantly contribute to the strength or not” Steel Reseach, 2004

  16. OBJECTIVES • Study the potential precipitation of Nb in ferrite during coiling. • Estimate the precipitation strengthening

  17. EXPERIMENTAL C Si Mn Al Nb N 0.06 0.35 1.00 0.047 0.056 0.006 Plane strain compression + simulated coiling Modelling assisted design of the thermomechanical sequences

  18. EXPERIMENTAL C Si Mn Al Nb N 0.06 0.35 1.00 0.047 0.056 0.006 Mechanical testing & microstructural characterisation

  19. EXPERIMENTAL Sequence S1 : 1400 1250ºC, 15 min 1100ºC, 1s-1,  =0.3; + 20s holding 1200 1000 Temperature 800 600 Recrystallized  400 750ºC Coiling  & 300ºC Nb in solution 200 0 0 50 100 150 200 250 300

  20. EXPERIMENTAL Sequence S2 : 1400 1250ºC, 15 min 1100ºC, 1s-1,  =0.3; + 20s holding 1200 1000ºC, 1s-1,  =0.3 1000 Temperature 800 600 Strained  Coiling 400 750ºC &  Some strain induced 300ºC 200 precipitation of Nb 0 0 50 100 150 200 250 300

  21. EXPERIMENTAL S1 and S2 Reference tests 1400 1250ºC, 15 min 1100ºC, 1s-1,  =0.3; + 20s holding 1200 1100ºC, 1s-1,  =0.3 1000 Temperature 800 870ºC; 1h 600 400 Rex or Strained  Coiling & 200 (650ºC) full Nb precipitation 0 0 50 100 150 200 250 300

  22. PRECIPITATION IN AUSTENITE: REFERENCE TEST 870ºC Nb precipiation model predictions B. López et al., 2006

  23. TEM ANALYSIS Reference tests S1-R S2-R

  24. MICROSTRUCTURE S1 Coiling T 750ºC 0.06%C-0.056%Nb 600ºC T coiling <600ºC Bainitic 500ºC microstructures

  25. TENSILE PROPERTIES

  26. TENSILE PROPERTIES + FERRITE GRAIN SIZE

  27. CONTRIBUTIONS TO YIELD STRENGTH solid solution dislocations             1 / 2 k d y 0 ss d ppt lattice grain size precipitates friction   54  32 Mn  83 Si  5544 ( N  C )  17 . 4 d  1 / 2 yF free free Pickering, 1993

  28. CONTRIBUTIONS TO YIELD STRENGTH         1 / 2 54 32 Mn 83 Si 5544 ( N C ) 17 . 4 d yF free free C free equilibrium N free was determined by modelling       yNb y yF exp erimental

  29. EXTRA STRENGTHENING DUE TO Nb 0.06%C-0.056%Nb

  30. EXTRA STRENGTHENING DUE TO Nb 0.06%C-0.056%Nb Full precipitation in 

  31. EXTRA STRENGTHENING DUE TO Nb 0.06%C-0.056%Nb Reducing the 0.13%C-0.02%Nb Nb content

  32. EFFECT OF COILING TEMPERATURE ON MICROSTRUCTURE Coiling at : 750ºC 600ºC S1 IQ-EBSD  y Nb (MPa)  90 150

  33. EFFECT OF COILING TEMPERATURE ON MICROSTRUCTURE Coiling at : 750ºC 600ºC S1 IQ-EBSD  y Nb (MPa)  90 150

  34. EFFECT OF COILING TEMPERATURE ON MICROSTRUCTURE Coiling at : 750ºC 600ºC S1 IQ-EBSD  y Nb (MPa)  90 150

  35. TEM ANALYSIS Thin foil Coiling at 750ºC GB Precipitation at the transformation front

  36. CCT CURVES

  37. CCT + INTERPHASE PTT CURVES T. Sakuma and R.W.K. Honeycombe: 1984

  38. CCT + INTERPHASE PTT + COILING CURVES Coiling at 750ºC

  39. TEM ANALYSIS Coiling at 750ºC • Nb-rich precipitates : • in few regular parallel rows (spacing  1300 nm) • in some segments of rows • irregularly distributed Discontinuous interphase precipitation • AlN nucleated at dislocations

  40. CCT + INTERPHASE PTT + COILING CURVES Coiling at 600ºC

  41. TEM ANALYSIS Thin foil Coiling at 600ºC Homogeneous precipitation in ferrite

  42. TEM ANALYSIS Carbon extraction replica Coiling at 600ºC Cu Cu Nb Fe Al Cu Nb 0 2 4 6 8 10 12 14 16 From the Cu-grid

  43. PRECIPITATION STRENGTHENING ASHBY-OROWAN'S EQUATION f d   v ( MPa ) 10 . 8 ln   ppt fv: volume fraction 4 d 6 . 125 10 d: average precipitate diameter in  m

  44. PRECIPITATION STRENGTHENING Coiling at 650ºC

  45. STABILITY Sequence S1 : 1400 1250ºC, 15 min 1100ºC, 1s-1,  =0.3; + 20s holding 1200 1000 Temperature 800 600 600ºC; 24 or 48h 400 Long holding at Coiling 200 temperature 0 0 50 100 150 200 250 300

  46. TENSILE S1 + holding at 600ºC The tensile properties are not affected by a prolonged holding at 600ºC

  47. TEM ANALYSIS S1 + 48h holding at 600ºC Baker-Nutting orientation relationship

  48. CONCLUSIONS • Coiling at 600ºC produces in this steel an homogeneous, extremely fine and stable general precipitation of NbC in ferrite, leading to maximum strengthening: • proportional to the Nb left in solution in austenite; • in agreement with the predictions from Ashby- Orowan’s equation. • Considering homogeneous precipitation of NbC in ferrite as a possible strengthening mechanism opens the way to a better design of the composition and thermomechanical sequences for an improved use of Nb additions.

  49. ACKNOWLEDGEMENTS • To the Institute of Materials, Minerals and Mining (IOM3) • To Companhia Brasileira de Metalurgia e Mineração (CBMM) • To Beta Technology • To Naila Croft, Ben Mico and Georgia Gomes Bemfica.

  50. Modelling to Optimise the Processing of Niobium Steels 50

Recommend


More recommend