PRE-ASYMPTOTIC MEASURE OF FAT TAILEDNESS Nassim Nicholas Taleb Tandon School of Engineering, NYU
1234235 !"#$%&'($)%!*+,%-.+/*/0/" kappa and Portfolio ÒRiskÓ Speed of statistical inference (number of summands) and diversification effects are same.
6"#+0("+%'7%8#/%9#*$")."++ !"#$ : ;<;=>!?9>;%@A>BB%C8*.*/"%6'D"./+EF%%G0(/'+*+ : =>!?9>;%@A>BBF%9#*$%"HI'."./ %&'() F% : J-;-2K'.K"./(#/*'.%D"#+0("+ : L0#./*$"%K'./(*M0/*'. : </N"(
Preasymptotics for Summands There is no such thing as infinite summands in the real world n ÒlargeÓ but not asymptotic is not necessarily in the perceived distributional class
!"#$%&'()'*)+,-+) !"#$%"& .#")/&-&.) 0
B/#M$"%O*+/ ?P0*Q
1"2"($/&3"4) 5"2.($/)6&-&. 77
8#9):;<)2'.)=>< : 8")$(")&2."("+."4)&2)@/$++)'*)*&2&.")-"$2)2'.) 2"@"++$(&/9)*&2&.")%$(&$2@"A : :;<)-'(")B2$.,($/C : :;<)-'(")B"**&@&"2.C)"D@"E.)*'()2'2)1$,++&$2 : :;<)'2/9)B"**&@&"2.C)$+9-E.'.&@$//9 #"2@")2'.)*'() !"#"$% B+-$//C) ! 7?
='-")F&+.'(9)'*)=><
: ;2'.#"()G$9).') B-"$+,("C)H'.#) 56> I)+E""4)'*) 66J
K"+,/.+
=('M$"D+%*.%$*/"(#/0(" : 9".)".KR%/'%/("#/%#$$%/#*$%"HI'."./+%ST%#+%J#0++*#.
6'L2'(-$/)!',24+ : ;)/'L2'(-$/)G&.#)#&L#))M)+.$9+)/'L2'(-$/),24"() +,--$.&'2 : ;)/'L2'(-$/)G&.#)/'G))M)H"#$%"+)/&N")2'(-$/ ?O
Infinity Shminfinity ¥ For a Lognormal, ÒX large but not infinityÓ is even more ambiguous. ¥ For a lognormal, Ò ! low is ambiguousÓ
??
;)2&@")"P,$/&.9
5,-,/$2.+ : =&-E/9Q)+&2@") "#$#%&!'()*+,-+).)/!)(#$$&!,(0)1)!)2#$#%&!'()*+,-+).)/304 : 8")-$.@#)@,-,/$2.+)'*)R"$(+'2).').#'+")'*)2S+,--"4)6'L2'(-$/ : R$($-".(&3$.&'2)4"."(-&2"+).#")R"$(+'2)B@/$++C)T#"(")R"$(+'2)UVW
X&2$/-"2." ?Y
5,H&@)$/E#$
Z-E&(&@$/)[$EE$)=RYOO � ! 6/44 012)$)-"  5/=9 !"#$%&' ()*)$ +",&$)-" ."$/ 5/=4 5/<9 5/<4 +",&$)-" ."$/ 5/;9 ! 4 544 644 744 844 944 :44
Recommend
More recommend