CPHI-2020, CERN, February 2020 Polarized Fragmentation Functions Anselm Vossen Research supported by the
Single Hadron production In SIDIS is a well travelled path Observables: z: fractional energy of the quark carried by the hadron p h,T : transverse momentum of the hadron wrt the quark direction: TMD FFs Parton polarization Γ Spin averaged longitudinal transverse Hadron Polarization β£ $/& (π¨, π + ) .$/& (π¨, π + ) spin averaged πΈ # πΌ # longitudinal Transverse (here L ) 2
Transverse momentum dependent distributions (TMDs) β’ In addition to the spin-spin correlations can have spin momentum correlations! Spin-orbit correlations 3
PDF in SIDIS β πΊπΊ in π 2 π 3 β’ E.g. Sivers β Ξ β production X X β’ Spacelike SIDIS Timelike SIA β’ GPDs β GDAs (not discussed here) 4
βYou think you understand something?---Now add spinβ¦in Hadronization!β β’ Γ polarized final states Ο + β’ Γ di-hadron correlations Ο β β’ Explore spin-orbit correlation in hadronization β’ Additional degrees of freedom in final state make targeted extraction of nucleon structure possible Γ see h 1 (x), e(x) β’ New Fragmentation Functions 5
Enter polarization in the final States Observables: z: fractional energy of the quark carried by the hadron p h,T : transverse momentum of the hadron wrt the quark direction: TMD FFs Parton polarization Γ Spin averaged longitudinal transverse Hadron Polarization β£ .π/π (π, π πΌ ) spin averaged $/& (π¨, π + ) πΈ # π° π π³/π π, π πΌ π/π π, π πΌ longitudinal π― π π° ππ΄ Transverse (here L ) .π³/π ( π, π πΌ ) π¬ ππΌ π³/π« ( π, π πΌ ) = π° π π/π π, π πΌ = π― ππΌ .π³/π« ( π, π πΌ ) = π° ππΌ β’ Analogue Γ similar to PDFs encoding spin/orbit correlations Determining final state polarization needs self analyzing decay ( Ξ) β’ β’ Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-) 6
DI-HADRON FRAGMENTATION FUNCTIONS Additional Observable: π = π # β π W : The relative momentum of the hadron pair is an additional degree of freedom: the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin Parton polarization Γ Spin averaged longitudinal transverse Hadron Polarization β£ .π/π (π, π πΌ M, (Ph), q ) βDi-hadron spin averaged $/& (π¨, π) π° π πΈ # Collinsβ longitudinal G 1 β₯ (z,M,P h , q )= H 1 β’ (z,M, (P h ), q )=. Transverse Type eq Ty equat ation he here. T -odd, chiral-even T -odd, chiral-odd Γ jet handedness Colinear QCD vaccum strucuture β’ Relative momentum of hadrons can carry away angular momentum β’ Partial wave decomposition in q Γ Needs to be mapped completely!! (no information yet) β’ Energy dependence? ( Γ VM fractionsβ¦.) β’ Relative and total angular momentum Γ In principle endless tower of FFs 7
Some specific points of interest . ) β’ Spin orbit correlations in hadronization (e.g. π» # β’ Interference patterns of different relative partial waves β’ Access to aspects of the nucleon structure difficult in single hadrons β’ Examples: β’ Boer-Mulders w/o Cahn, twist3 β’ e(x) Γ See T. Haywardβs talk β’ Ξ production β’ sensitive to s quarks β’ FF counterpart to Sivers Γ universality etc β’ Test twist3 calculations β’ Additional degrees of freedom Γ Need large statistics 8
Role of B-factories β’Asymmetric-energy e + e - collider β’ βs βΏ 10.6 GeV (Ο(4S)) β’ Ξ²Ξ³=0.425 β’ L βΏ 1 ab -1 + + - - World Data (Sel.) for e World Data (Sel.) for e e e Β± Β± +X Production +X Production β β Ο Ο ) 13 s S β’ Dominated by B 10 L D 9 1 G e V ( 1 1 c( Γ 0 2 12 ) 10 D factories E L P H I NIMA 729 ,615(2013) Γ 9 1 G 11 e 10 V ( /dz 5 Γ ALEPH 91GeV ( 1 10 Γ 0 ) 10 10 3 Γ 10 9 Γ β’ Limited lever arm ) Ο NIMA 479 ,117(2002) 9 TASSO 34GeV, 44GeV ( 10 d tot.had. in π‘ in particular 8 10 7 Γ 10 7 Γ ) T P C 2 9 G 7 e V 10 ( 2 Γ 1 6 Γ 0 at high z ) Ο 6 10 1/ this meas., Belle 11 GeV ( 5 10 CLEO 10GeV ( β’ Precision data 0.04) Γ 4 10 3000) Γ A R G 3 U includes charged S 10 9 G e V , 1 0 G e V ( 1 2 Γ 5 10 0 ) single hadrons p , R o n a n e t a 10 l . 3 G e V ( 1 ) Γ K, p, D, Ξ, charmed 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 baryonsβ¦ z Phys.Rev.Lett. 111 (2013) 062002 (Belle) β’ Well described at β’Asymmetric-energy e + e - collider Phys.Rev. D88 (2013) 032011 (BaBar) NNLO β’ βs βΏ 10.6 GeV (Ο(4S)) (e.g. DSS, NNFF) β’ Ξ²Ξ³=0.65 β’ L βΏ 500 fb -1 9
The future is now: Next Generation B factory SuperKEKB β’ Belle/KEKB recorded ~1000 fb -1 . Now have to change units on the y-axis to ab -1 Close to Belle lumi before winter shutdown β« π β 11 ππ 3# βnano-beamsβ are the Beam currents only a key; vertical beam size factor of two higher is 50nm at the IP than KEKB (~PEPII) β’ β« π needed to map out fully differential ππ of polarized FF β’ π , flavor dependence for di-hadrons β’ π + , π¨, π¨ d,e for Ξ (also correction for feed-down needs statistics)
Belle II Detector (comp. to Belle) 11
2019: First Collisions in Phase 3, the Physics Run Clear signals for B Γ J/Ο X in ~1/2 of Phase 3 data.
Collins FFs IN π 2 π 3 β’ First non-zero independent measurement of the Collins effect for pion pairs in e + e - annihilation by Belle Collaboration @ βs βΌ 10.6 GeV ( PRL 111,062002(2008), PRD 88,032011(2013) ) leads to first extraction of transversity (Phys.Rev. D75 (2007) 054032 ) from SIDIS and e+e- j 2 β’ Confirmed by BaBar @ βs βΌ 10.6 GeV ( PRD 90,052003 (2014); p + PRD 92,111101(R)(2015) for KK and KΟ ) z 2 β’ Measured at BESIII @ βs = 3.65 GeV ( PRL 116,42001(2016) ) q 2 q 1 p - j 1 quark-2 quark-1 z 1 spin spin z 1,2 relative pion pair momenta Cross-section π 2 π 3 β β # β W β # β W + π . πΈ # . + πΌ # . πΌ # . cos π # + π W β πΈ # β’ Access spin dependence and p T dependence (convolution or in jet) without PDF complication β’ Made possible by B-factory luminosities 13
New: P t dependence of charged pions from Belle BaBar U nlike/ L ikesign Ratios to cancel acceptance effects Preliminary Unlike: fav*fav+dis*dis Like: fav*dis β’ Trend consistent with BaBar β’ Direct comparison difficult due to different correction schemes (thrust vs πp π β axis) 14
<latexit sha1_base64="Fmfzj0FecUk1cyEGHeimBsewYTk=">ACV3icbZHNS8MwGMbTbuqcX5sevRSHIoyNdgp6EYZePHiYw6mwbiPN0hlM05Kkwgj9J8XL/hUvmn7g13wh4cnveUOSJ15EiZC2vTDMUnlda2yXt3Y3NreqdV370UYc4QHKQhf/SgwJQwPJBEUvwYcQwDj+IH7/kq9R9eMBckZHdyHuFRAGeM+ARBqdGkxtwAyicEqeonE+V0krFyIzK2kwvX5xCp/ljZbhTkXqKXN7k6KvysOZ2azS/ZSjLc/MatHFerk1rDbtZWcvCKUQDFNWb1F7daYjiADOJKBRi6NiRHCnIJUEUJ1U3FjiC6BnO8FBLBgMsRirLJbEONZlafsj1YNLK6M8dCgZCzANPd6YpiL9eCv/zhrH0z0eKsCiWmKH8ID+mlgytNGRrSjhGks61gIgTfVcLPUGdl9RfkYbg/H3ysrjvtJ2Tduf2tNG9LOKogH1wAI6BA85AF1yDHhgABN7Au1EysbC+DBXzUreahrFnj3wq8z6J+/fs64=</latexit> <latexit sha1_base64="Zyi8lNnW0azNoYQ5/Ck3gcBksc=">ACVXicbZHNS8MwGMbTOuecH6t69FIcijAc7RT0Igy9ePAwh/uAdRtplm5h6QdJKozQf3IX8T/xIpiuFXTzhcCT3/O+JHniRpRwYVkfmr5V2C7ulHbLe/sHhxXj6LjLw5gh3EhDVnfhRxTEuCOILifsQw9F2Ke+78MfV7b5hxEgavYhHhoQ+nAfEIgkKhsUEdH4oZglS2k7G0G8lIOljA5N7xGESynW2dyM/cRJHnTF3kLZlPRrXaj7pK5ArkNCUZHhtVq26tytwUdi6qIK/W2Fg6kxDFPg4EopDzgW1FYighEwRnJSdmOMIojmc4oGSAfQxH8pVKol5rsjE9EKmViDMFf09IaHP+cJ3VWeaAV/3UvifN4iFdzeUJIhigQOUHeTF1BShmUZsTgjDSNCFEhAxou5qohlUWQn1EWUVgr3+5E3RbdTt63rj5abafMjKIFTcAYugQ1uQRM8gRboASW4FPTNF17170gl7MWnUtnzkBf0qvfAO7hbRl</latexit> New: π r /π from Belle = Ο 0 Ο + + Ο 0 Ο β 12 = R 0 Β± R Ο 0 12 Ο + Ο + + Ο β Ο β R L 12 12 = R Ξ· Β± Ξ·Ο + + Ξ·Ο β 12 R Ξ· = Ο + Ο + + Ο β Ο β R L 12 β’ Rise with π π,π , similar to charged pions 0.07 12 h A h 0.06 A with stat. uncertainties 12 h 0.05 A systematic uncertainties 12 0.04 0.03 0.02 1 0.01 5 0 0.4 0.5 0.6 0.7 0.8 z 1 π almost flat except large z β’
Consistency between Neutral and charged pions 0.06 12 A p 0 Preliminary 0.05 A 12 UL UC 0.04 A -A 12 12 0.03 ππ β π© ππ π½π« (π±ππππππ) = π ππ 0.02 0.01 0 - 0.01 0.3 0.4 0.5 0.6 0.7 0.8 z 1 16
Measuring transverse spin dependent di-Hadron Correlations In unpolarized e + e - Annihilation into Quarks Interference effect in e + e - electron quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements! - + p p - + ( ) p p ( ) j 2 j 1 q 1 Experimental requirements: z 2 q 2 z 1 Β§ Small asymmetries Γ¨ quark-2 quark-1 very large data sample! spin spin Β§ Good particle ID to high momenta. z 1,2 relative pion pair momenta Β§ Hermetic detector positron 17
First measurement of Interference Fragmentation β ( π β β π 2 π 3 ) Function πΌ # arXiv:1104.2425 AV, RS et. al, PRL 107, 072004(2011) a 12 Β΅ H 1< β’ H 1< 18
Recommend
More recommend