polarized fragmentation functions
play

Polarized Fragmentation Functions Anselm Vossen Research supported - PowerPoint PPT Presentation

CPHI-2020, CERN, February 2020 Polarized Fragmentation Functions Anselm Vossen Research supported by the Single Hadron production In SIDIS is a well travelled path Observables: z: fractional energy of the quark carried by the hadron p h,T :


  1. CPHI-2020, CERN, February 2020 Polarized Fragmentation Functions Anselm Vossen Research supported by the

  2. Single Hadron production In SIDIS is a well travelled path Observables: z: fractional energy of the quark carried by the hadron p h,T : transverse momentum of the hadron wrt the quark direction: TMD FFs Parton polarization Γ  Spin averaged longitudinal transverse Hadron Polarization ⇣ $/& (𝑨, π‘ž + ) .$/& (𝑨, π‘ž + ) spin averaged 𝐸 # 𝐼 # longitudinal Transverse (here L ) 2

  3. Transverse momentum dependent distributions (TMDs) β€’ In addition to the spin-spin correlations can have spin momentum correlations! Spin-orbit correlations 3

  4. PDF in SIDIS ⇔ 𝐺𝐺 in 𝑓 2 𝑓 3 β€’ E.g. Sivers ⇔ Ξ› ↑ production X X β€’ Spacelike SIDIS Timelike SIA β€’ GPDs ⇔ GDAs (not discussed here) 4

  5. β€œYou think you understand something?---Now add spin…in Hadronization!” β€’ Γ  polarized final states Ο€ + β€’ Γ  di-hadron correlations Ο€ – β€’ Explore spin-orbit correlation in hadronization β€’ Additional degrees of freedom in final state make targeted extraction of nucleon structure possible Γ  see h 1 (x), e(x) β€’ New Fragmentation Functions 5

  6. Enter polarization in the final States Observables: z: fractional energy of the quark carried by the hadron p h,T : transverse momentum of the hadron wrt the quark direction: TMD FFs Parton polarization Γ  Spin averaged longitudinal transverse Hadron Polarization ⇣ .π’Š/𝒓 (π’œ, 𝒒 𝑼 ) spin averaged $/& (𝑨, π‘ž + ) 𝐸 # 𝑰 𝟐 𝚳/𝒓 π’œ, 𝒒 𝑼 π’Š/𝒓 π’œ, 𝒒 𝑼 longitudinal 𝑯 𝟐 𝑰 πŸπ‘΄ Transverse (here L ) .𝚳/𝒓 ( π’œ, 𝒒 𝑼 ) 𝑬 πŸπ‘Ό 𝚳/𝐫 ( π’œ, 𝒒 𝑼 ) = 𝑰 𝟐 π’Š/𝒓 π’œ, 𝒒 𝑼 = 𝑯 πŸπ‘Ό .𝚳/𝐫 ( π’œ, 𝒒 𝑼 ) = 𝑰 πŸπ‘Ό β€’ Analogue Γ  similar to PDFs encoding spin/orbit correlations Determining final state polarization needs self analyzing decay ( Ξ›) β€’ β€’ Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-) 6

  7. DI-HADRON FRAGMENTATION FUNCTIONS Additional Observable: 𝑆 = 𝑄 # βˆ’ 𝑄 W : The relative momentum of the hadron pair is an additional degree of freedom: the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin Parton polarization Γ  Spin averaged longitudinal transverse Hadron Polarization ⇣ .π’Š/𝒓 (π’œ, 𝒒 𝑼 M, (Ph), q ) β€˜Di-hadron spin averaged $/& (𝑨, 𝑁) 𝑰 𝟐 𝐸 # Collins’ longitudinal G 1 βŠ₯ (z,M,P h , q )= H 1 − (z,M, (P h ), q )=. Transverse Type eq Ty equat ation he here. T -odd, chiral-even T -odd, chiral-odd Γ  jet handedness Colinear QCD vaccum strucuture β€’ Relative momentum of hadrons can carry away angular momentum β€’ Partial wave decomposition in q Γ  Needs to be mapped completely!! (no information yet) β€’ Energy dependence? ( Γ  VM fractions….) β€’ Relative and total angular momentum Γ  In principle endless tower of FFs 7

  8. Some specific points of interest . ) β€’ Spin orbit correlations in hadronization (e.g. 𝐻 # β€’ Interference patterns of different relative partial waves β€’ Access to aspects of the nucleon structure difficult in single hadrons β€’ Examples: β€’ Boer-Mulders w/o Cahn, twist3 β€’ e(x) Γ  See T. Hayward’s talk β€’ Ξ› production β€’ sensitive to s quarks β€’ FF counterpart to Sivers Γ  universality etc β€’ Test twist3 calculations β€’ Additional degrees of freedom Γ  Need large statistics 8

  9. Role of B-factories β€’Asymmetric-energy e + e - collider β€’ √s ∿ 10.6 GeV (Ο’(4S)) β€’ Ξ²Ξ³=0.425 β€’ L ∿ 1 ab -1 + + - - World Data (Sel.) for e World Data (Sel.) for e e e Β± Β± +X Production +X Production β†’ β†’ Ο€ Ο€ ) 13 s S β€’ Dominated by B 10 L D 9 1 G e V ( 1 1 c( Γ— 0 2 12 ) 10 D factories E L P H I NIMA 729 ,615(2013) Γ— 9 1 G 11 e 10 V ( /dz 5 Γ— ALEPH 91GeV ( 1 10 Γ— 0 ) 10 10 3 Γ— 10 9 Γ— β€’ Limited lever arm ) Οƒ NIMA 479 ,117(2002) 9 TASSO 34GeV, 44GeV ( 10 d tot.had. in 𝑑 in particular 8 10 7 Γ— 10 7 Γ— ) T P C 2 9 G 7 e V 10 ( 2 Γ— 1 6 Γ— 0 at high z ) Οƒ 6 10 1/ this meas., Belle 11 GeV ( 5 10 CLEO 10GeV ( β€’ Precision data 0.04) Γ— 4 10 3000) Γ— A R G 3 U includes charged S 10 9 G e V , 1 0 G e V ( 1 2 Γ— 5 10 0 ) single hadrons p , R o n a n e t a 10 l . 3 G e V ( 1 ) Γ— K, p, D, Ξ›, charmed 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 baryons… z Phys.Rev.Lett. 111 (2013) 062002 (Belle) β€’ Well described at β€’Asymmetric-energy e + e - collider Phys.Rev. D88 (2013) 032011 (BaBar) NNLO β€’ √s ∿ 10.6 GeV (Ο’(4S)) (e.g. DSS, NNFF) β€’ Ξ²Ξ³=0.65 β€’ L ∿ 500 fb -1 9

  10. The future is now: Next Generation B factory SuperKEKB β€’ Belle/KEKB recorded ~1000 fb -1 . Now have to change units on the y-axis to ab -1 Close to Belle lumi before winter shutdown ∫ 𝑀 β‰ˆ 11 𝑔𝑐 3# β€œnano-beams” are the Beam currents only a key; vertical beam size factor of two higher is 50nm at the IP than KEKB (~PEPII) β€’ ∫ 𝑀 needed to map out fully differential π‘’πœ of polarized FF β€’ πœ„ , flavor dependence for di-hadrons β€’ π‘ž + , 𝑨, 𝑨 d,e for Ξ› (also correction for feed-down needs statistics)

  11. Belle II Detector (comp. to Belle) 11

  12. 2019: First Collisions in Phase 3, the Physics Run Clear signals for B à J/ψ X in ~1/2 of Phase 3 data.

  13. Collins FFs IN 𝑓 2 𝑓 3 β€’ First non-zero independent measurement of the Collins effect for pion pairs in e + e - annihilation by Belle Collaboration @ √s ∼ 10.6 GeV ( PRL 111,062002(2008), PRD 88,032011(2013) ) leads to first extraction of transversity (Phys.Rev. D75 (2007) 054032 ) from SIDIS and e+e- j 2 β€’ Confirmed by BaBar @ √s ∼ 10.6 GeV ( PRD 90,052003 (2014); p + PRD 92,111101(R)(2015) for KK and KΟ€ ) z 2 β€’ Measured at BESIII @ √s = 3.65 GeV ( PRL 116,42001(2016) ) q 2 q 1 p - j 1 quark-2 quark-1 z 1 spin spin z 1,2 relative pion pair momenta Cross-section 𝑓 2 𝑓 3 β†’ β„Ž # β„Ž W β„Ž # β„Ž W + π‘Œ . 𝐸 # . + 𝐼 # . 𝐼 # . cos 𝜚 # + 𝜚 W ∝ 𝐸 # β€’ Access spin dependence and p T dependence (convolution or in jet) without PDF complication β€’ Made possible by B-factory luminosities 13

  14. New: P t dependence of charged pions from Belle BaBar U nlike/ L ikesign Ratios to cancel acceptance effects Preliminary Unlike: fav*fav+dis*dis Like: fav*dis β€’ Trend consistent with BaBar β€’ Direct comparison difficult due to different correction schemes (thrust vs π‘Ÿp π‘Ÿ βˆ’ axis) 14

  15. <latexit sha1_base64="Fmfzj0FecUk1cyEGHeimBsewYTk=">ACV3icbZHNS8MwGMbTbuqcX5sevRSHIoyNdgp6EYZePHiYw6mwbiPN0hlM05Kkwgj9J8XL/hUvmn7g13wh4cnveUOSJ15EiZC2vTDMUnlda2yXt3Y3NreqdV370UYc4QHKQhf/SgwJQwPJBEUvwYcQwDj+IH7/kq9R9eMBckZHdyHuFRAGeM+ARBqdGkxtwAyicEqeonE+V0krFyIzK2kwvX5xCp/ljZbhTkXqKXN7k6KvysOZ2azS/ZSjLc/MatHFerk1rDbtZWcvCKUQDFNWb1F7daYjiADOJKBRi6NiRHCnIJUEUJ1U3FjiC6BnO8FBLBgMsRirLJbEONZlafsj1YNLK6M8dCgZCzANPd6YpiL9eCv/zhrH0z0eKsCiWmKH8ID+mlgytNGRrSjhGks61gIgTfVcLPUGdl9RfkYbg/H3ysrjvtJ2Tduf2tNG9LOKogH1wAI6BA85AF1yDHhgABN7Au1EysbC+DBXzUreahrFnj3wq8z6J+/fs64=</latexit> <latexit sha1_base64="Zyi8lNnW0azNoYQ5/Ck3gcBksc=">ACVXicbZHNS8MwGMbTOuecH6t69FIcijAc7RT0Igy9ePAwh/uAdRtplm5h6QdJKozQf3IX8T/xIpiuFXTzhcCT3/O+JHniRpRwYVkfmr5V2C7ulHbLe/sHhxXj6LjLw5gh3EhDVnfhRxTEuCOILifsQw9F2Ke+78MfV7b5hxEgavYhHhoQ+nAfEIgkKhsUEdH4oZglS2k7G0G8lIOljA5N7xGESynW2dyM/cRJHnTF3kLZlPRrXaj7pK5ArkNCUZHhtVq26tytwUdi6qIK/W2Fg6kxDFPg4EopDzgW1FYighEwRnJSdmOMIojmc4oGSAfQxH8pVKol5rsjE9EKmViDMFf09IaHP+cJ3VWeaAV/3UvifN4iFdzeUJIhigQOUHeTF1BShmUZsTgjDSNCFEhAxou5qohlUWQn1EWUVgr3+5E3RbdTt63rj5abafMjKIFTcAYugQ1uQRM8gRboASW4FPTNF17170gl7MWnUtnzkBf0qvfAO7hbRl</latexit> New: 𝜌 r /πœƒ from Belle = Ο€ 0 Ο€ + + Ο€ 0 Ο€ βˆ’ 12 = R 0 Β± R Ο€ 0 12 Ο€ + Ο€ + + Ο€ βˆ’ Ο€ βˆ’ R L 12 12 = R Ξ· Β± Ξ·Ο€ + + Ξ·Ο€ βˆ’ 12 R Ξ· = Ο€ + Ο€ + + Ο€ βˆ’ Ο€ βˆ’ R L 12 β€’ Rise with π’œ 𝟐,πŸ‘ , similar to charged pions 0.07 12 h A h 0.06 A with stat. uncertainties 12 h 0.05 A systematic uncertainties 12 0.04 0.03 0.02 1 0.01 5 0 0.4 0.5 0.6 0.7 0.8 z 1 πœƒ almost flat except large z β€’

  16. Consistency between Neutral and charged pions 0.06 12 A p 0 Preliminary 0.05 A 12 UL UC 0.04 A -A 12 12 0.03 π•πŒ βˆ’ 𝑩 πŸπŸ‘ 𝑽𝑫 (𝑱𝒕𝒑𝒕𝒒𝒋𝒐) = 𝐁 πŸπŸ‘ 0.02 0.01 0 - 0.01 0.3 0.4 0.5 0.6 0.7 0.8 z 1 16

  17. Measuring transverse spin dependent di-Hadron Correlations In unpolarized e + e - Annihilation into Quarks Interference effect in e + e - electron quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements! - + p p - + ( ) p p ( ) j 2 j 1 q 1 Experimental requirements: z 2 q 2 z 1 Β§ Small asymmetries Γ¨ quark-2 quark-1 very large data sample! spin spin Β§ Good particle ID to high momenta. z 1,2 relative pion pair momenta Β§ Hermetic detector positron 17

  18. First measurement of Interference Fragmentation ∠ ( π‘Ÿ ↑ β†’ 𝜌 2 𝜌 3 ) Function 𝐼 # arXiv:1104.2425 AV, RS et. al, PRL 107, 072004(2011) a 12 Β΅ H 1< β€’ H 1< 18

Recommend


More recommend