playing with light
play

Playing with Light: Future Quantum Technologies Fabio Sciarrino - PowerPoint PPT Presentation

Playing with Light: Future Quantum Technologies Fabio Sciarrino Dipartimento di Fisica Sapienza Universit di Roma http://quantumoptics.phys.uniroma1.it www.3dquest.eu The Turing Machine (1936) Goal: to decrypt the Enigma codes


  1. Playing with Light: Future Quantum Technologies Fabio Sciarrino Dipartimento di Fisica Sapienza Università di Roma � http://quantumoptics.phys.uniroma1.it www.3dquest.eu

  2. The Turing Machine (1936) Goal: to decrypt the Enigma codes… ENIGMA: ¡ 1940 ¡II ¡world ¡war The Turing machine: abstract model for a machine able to run an algorithm Movie: The Imitation Game

  3. ENIAC (1946) Electronic Numerical Integrator And Computer 18.000 thermionic valves, 30 tons, 180 mq Apple I (1976) � .. 4 Kb di Ram...! � �

  4. TODAY... Tianhe-1A (2010) Supercomputer Operations per second 1 PetaFlops I-Phone 4s (2012) RAM 512 Mb

  5. Breaking news! 19 Febbraio 2012

  6. “ […] Un importante passo in avanti verso i super computer quantistici del futuro, realizzato dai fisici dell'università australiana del Nuovo Galles del Sud a Sydney .” La Repubblica “ [...] Científicos australianos han construido el transistor más pequeño del mundo a partir de un único átomo, lo que supone un gran paso hacia el desarrollo de los futuros ordenadores cuánticos.” El Mundo “ [...]they had laid the groundwork for a futuristic quantum computer that might one day function in a nanoscale world and would be orders of magnitude smaller and quicker than today’s silicon-based machines.” The New York Times

  7. D-wave: a commercial 
 quantum computer… 512 qubit.... Cost: 10.000.0000 $ bought from NASA, google..

  8. D-wave: a commercial 
 quantumcomputer ?!? 512 qubit.... Cost: 15.000.0000 $ Bought from da NASA, google.. Is it"truly" quantum? And more powerfull than a classical computer?

  9. Results of Classical Physics: At the end of 1800... The predominant physical theory acknowledged as the only constituents of the Universe matter and radiation made of particles perfectly has a wave-like behavior and obeys the localizable, subject to laws of electrodynamics of Maxwell; Newton's law

  10. The equations of classical physics ....

  11. The equations of classical physics .... The kinematics of the bodies Electromagnetism (Maxwell's equations)

  12. The equations of classical physics .... Equation Phenomenon Description Collision between particles Equation Phenomenon Description Interference between waves

  13. The crisis of classical physics Classical physics can not explain what happens in the microscopic world ... Why an electron does not fall How do you explain the on the nucleus by emitting energy emitted from an electromagnetic radiation? irradiated metal surface?

  14. MICROSCOPIC MACROSCOPIC WORLD WORLD CLASSICAL QUANTUM PHYSICS PHYSICS

  15. The answers of Quantum Mechanics ... The energy, in the same material, has a discontinuous nature being formed by elementary quantity. QUANTUM THEORY All the processes of interaction between bodies (the "force fields") are "quantized" ["Building blocks": photons, electrons, etc..]

  16. The quantum of light: the photon Electromagnetic wave carries energy Energy changes in a discrete manner: as the (unit) of energy is the fundamental PHOTON Blu ¡ Rosso ¡ Giallo ¡ 495 ¡– ¡455 ¡nm Violetto ¡ 780 ¡– ¡620 ¡nm 600 ¡– ¡575 ¡nm Verde ¡ Arancione ¡ 455 ¡– ¡390 ¡nm 575 ¡– ¡495 ¡nm 620 ¡– ¡600 ¡nm Photon: I) Massless II) Energy E = h ν Energy Planck Frequency constant

  17. The "golden years" of Quantum Mechanics: Solvay Conference (1927) Quantum physics: Planck, Einstein, Bohr, 
 Dirac, Schroedinger, Heisenberg, Pauli,... 


  18. First Principle of dynamic F = m a Acceleration: Force acting effect of the force on the system Mass that describes the system

  19. Schroedinger equation WAVE h Planck constant Hamiltonian FUNCTION (describes the system considered)

  20. 
 
 Interference 
 “…the heart of quantum mechanics. 
 In reality it contains the only mystery ...” 
 R.P. Feynman (1965)

  21. Interference between waves

  22. Single-particle interference A Source B wall shutter

  23. Single-particle interference Probability to detect particle P L (x)

  24. Single-particle interference A Probability to detect Source particle B P A (x) wall shutter

  25. Single-particle interference A Source B wall shutter

  26. Single-particle interference Probability to detect particle P R (x)

  27. “classical” behaviour A Source B Probability to detect particle wall P(x) = P A (x) + P B (x)

  28. “classical” behaviour Probability to detect particle P(x) = P L (x) + P R (x)

  29. Quantum interference Probability to detect particle P(x) � � � Interference patterns

  30. Quantum interference Probability to detect particle P(x) A � � � B Interference Source patterns �

  31. Wavefunction From which slit the photon is going through ? It is as if the photon follows the two paths at the same time

  32. “classical” behaviour Probability to detect particle P(x) = P L (x) + P R (x)

  33. Quantum interference Probability to detect the particle P(x) A � � � B Interference Source pattern The photon “goes through” the two slits

  34. WAVE FUNCTION

  35. Observation 
 where the particle is going ? The interference patterns disappear!

  36. Where the particle is going ? Probability to detect a particle P(x) A � � � B Interference Source pattern �

  37. Observation A Source B wall The interference patterns disappear!

  38. Observation � A The observation disturbs the phenomenon: [“Heisenberg uncertitude principle”] Source B wall The interference patterns disappear!

  39. “It from bit” 
 J.A.Wheeler 
 The reality is also created by our questions, 
 or from information gained. 
 � The observation disturbs the phenomenon: [“Heisenberg uncertitude principle”]

  40. Interference with massive particles: electrons 8 electrons 60.000 electrons

  41. Fullerene C 60 ?

  42. Fullerene C 60 C 168 H 94 F 152 O 8 N 4 S 4 430 atomi

  43. MICROSCOPIC MACROSCOPIC WORLD WORLD CLASSICAL QUANTUM PHYSICS PHYSICS

  44. The paradox of Schroedinger's cat E. Schrödinger (1935) Oggetto classico: Oggetto quantistico – particella radioattiva. gatto 50% probabilità di decadimento in un’ora. Il decadimento causa la rottura della fiala con veleno

  45. The paradox of Schroedinger's cat ( ) Atom Atom not Alive Dead decayed decayed cat cat Not observed cats living and dead at the same time! Interaction with the environment: loss of coherence � � Superposition state Statistical mixture (alive and dead) (alive or dead) Computing: superposition states of many qubits Techniques for Quantum Error Correction � 51

  46. The border between the classical and quantum world Zurek, Physics Today, October 1991, page 38

  47. The border between the classical and quantum world Zurek, Physics Today, October 1991, page 38

  48. � 54

  49. Quantum Information Information Theory + Quantum Mechanics: It exploits the laws of quantum mechanics to communicate, manipulate and process information Fundamental physics Applied physics Non-locality Micro-macroscopic Criptography Computation Metrology transition

  50. 
 “Information is physics” R. Landauer � The manipulation of information is governed by the laws of physics.. � � � �

  51. Qubit Evolution of Information Technology 2020 BIT 1879 1986 i386 1 nanometro 1 micron BIT: Dichotomic variable 0 o 1

  52. Qubit QUBIT (Quantum Bit) QUANTUM INFORMATION

  53. Qubit QUBIT (Quantum Bit) GOAL: TO EXPLOIT QUANTUM PARALLELISM

  54. Qubit QUBIT (Quantum Bit)

  55. On ¡computable ¡numbers, ¡with ¡an ¡application ¡to ¡ the ¡Entscheidungsproblem ¡ A. ¡Turing, ¡1936 Simulating ¡Physics ¡with ¡Computers ¡ R. ¡Feynman, ¡1982 0 1 Quantum ¡theory, ¡ the ¡Church-­‑Turing ¡principle ¡and ¡ the ¡universal ¡quantum ¡computer ¡ D. ¡Deutsch, ¡1984 Algorithms ¡for ¡quantum ¡computation: ¡Discrete ¡log ¡and ¡factoring ¡ P. ¡W. ¡Shor, ¡1994

  56. Quantum information Light Polarizzazion Qubit Single photon polarization H: horizontal V: vertical � 62

  57. Quantum information Light Polarization � 63

  58. Classical ¡cryptography Cifrario ¡di ¡Cesare: ¡ I ¡sec ¡a.C Manoscritto ¡di ¡Voynich: ¡ XV ¡sec ¡d.C Internet: ¡ ENIGMA: ¡ 1990 ¡-­‑ ¡today 1940 ¡II ¡world ¡war

  59. Classical ¡cryptography: ¡private ¡key Need ¡to ¡exchange ¡the ¡secret ¡key ¡of ¡a ¡trusted ¡channel! ¡ «Message» Alice: 
 Bob: ¡ Sender Receiver Private ¡key Eve: ¡ Spy 2

  60. � 66

  61. Quantum cryptography

Recommend


More recommend