pip ii injector test warm front end
play

PIP-II Injector Test Warm Front End: Commissioning Update Lionel - PowerPoint PPT Presentation

FERMILAB-SLIDES-18-100-AD PIP-II Injector Test Warm Front End: Commissioning Update Lionel Prost In partnership with: India/DAE 9 th International Particle Accelerator Italy/INFN Conference UK/STFC France/CEA/Irfu, CNRS/IN2P3 April 29


  1. FERMILAB-SLIDES-18-100-AD PIP-II Injector Test Warm Front End: Commissioning Update Lionel Prost In partnership with: India/DAE 9 th International Particle Accelerator Italy/INFN Conference UK/STFC France/CEA/Irfu, CNRS/IN2P3 April 29 – May 4, 2018 This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE- Vancouver, BC, Canada AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

  2. ------------------------------0 Fermilab Acknowledgement • Results summarized within would not have been possible without the help and dedication of many (and I apologize in advance for missing some), in no particular order: D. Sun, A. Chen, P. Jones, D. Franck, D. Lambert, R. Kellett, C. Baffes, J. Batko, J. Czajkowski, T. Hamerla, T. Zuchnik, C. Briegel, J. Firebaugh, S. Conlon, G. Brown, R. Hagler, A. Saewert, G. Saewert, D. Frolov, V. Lebedev, R. Pasquinelli, A. Shemyakin, J. Steimel, B. Hanna, R. Andrews, J.-P. Carneiro, K. Carlson, B. Chase, D. Peterson, J. Edelen, J. Dye, W. Mueller, J. Einstein- Curtis, D. Sharma, S. Khole, V. Scarpine, B. Fellenz, N. Eddy, A. Warner, D. Nicklaus, M. Kucera, D. Arveson, A. Saini, E. Cullerton, M. Hassan, K. Kendziora, P. Derwent, M. Coburn, M. Ibrahim, V.L.S. Sista, C. Richard Designates co-authors 2 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  3. ------------------------------0 Fermilab Outline • Proton Improvement Plan II (PIP-II) & PIP-II Injector Test (PIP2IT) – Introduction, scope & goals for the Warm Front End (WFE) • PIP2IT WFE commissioning status – Focus on Medium Energy Beam Transfer (MEBT) line • Plans for high-power operation – 10+ kW • Conclusion 3 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  4. 0Fermilab Proton Improvement Plan-II (PIP-II) S. Nagaitsev’s talk (MOYGB3) • Upgrades to Fermilab’s accelerator complex – Central part: 800 MeV, 2 mA (average over ~ m s) CW-compatible H - Superconducting Linac and transfer line to Booster • Present ‘warm’ Linac: 400 MeV, 30 mA, 40 m s × 15 Hz – MW-class accelerator with multi-user operation capability Linac Muon • Platform for future upgrades Booster rings – Higher Main Injector power, multiple experiments 1 I I simultaneously I I I I I I I I I PIP2 linac and transfer line Layout of PIP-II and its possible future upgrades 4 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  5. ------------------------------0 Fermilab PIP-II Injector Test (PIP2IT) • A test accelerator representing the PIP-II front end -- .... ---- ------- - ___. <. l•i:i••;Ji•l•~tiii ~ ii , • _ ..... _ Ji=Cl.22 Ji=0.64 Ji=0.97 ---------- +< --- RT --- 31>-+- ------- SC -------- 1111 - 1111 - 1111 325 MHz 650 MHz 162.5 MHz 0.03 -10.3 MeV 10.3-185 MeV 185-800 MeV ~160 m PIP-II Linac scheme 30 keV 2.1 MeV 10 MeV 25 MeV LEBT RFQ MEBT HWR SSR1 HEBT PIP2IT scheme Warm front end LEBT = Low Energy Beam Transport; RFQ= Radio Frequency Quadrupole; MEBT= Medium Energy Beam Transport; HWR = Half-Wave Resonator; SSR1=Single Spoke Resonator; HEBT = High Energy Beam Transport 5 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  6. ------------------------------0 Fermilab Warm Front End scope • The Warm Front End (WFE) prepares a H - beam optimized for injection into the Booster and provides capabilities for future CW operation • It is composed of: – Two Ion Sources (IS) – Medium Energy Beam Transport (MEBT) and a Low Energy Beam Transport (LEBT) • Nominal output current: 2 mA averaged over ~ m s (from m s to CW • DC /long pulse operation operation ) – RFQ • Bunch-by-bunch chopping • CW operation (RF) capability • 30 keV 2.1 MeV Ion sources RFQ MEBT LEBT 6 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  7. 0Fermilab PIP2IT WFE main goals • Address all critical issues: .... / – LEBT with low emittance growth compatible \ I I I I I with chopping Reported . I I I I previously • Vacuum management in the LEBT/RFQ region I : I I – Reliable CW RFQ, including couplers I ' -------------------------------- ------- I – Bunch-by-bunch selection in MEBT • Bunch extinction, effective emittance growth – Compatibility of high-power deposition in MEBT absorber with SRF downstream • Absorber reliability & lifetime Warm front end of PIP2IT with HWR installed 7 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  8. LEBT and RFQ performance highlights • LEBT delivers up to 10 mA, 10 m s-dc, 20 Hz – e n,rms = 0.13 mm mrad (for < 5 mA) • RFQ operated pulsed (up to 5 ms) or CW, 162.5 MHz, 60 kV – Time of Flight measurements → 2.11 ± 0.006 MeV – 98 ± 2% transmission efficiency at 5 mA (pulsed beam) • Up to 10 mA with low losses – e n,rms < 0.2 mm mrad (for < 5 mA, nominal) Emittan Dipol Bun hing MEBT configuration for characterization of the RFQ 8 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  9. --------------------- OFermilab PIP2IT beam line configuration • Full length MEBT has been installed at the CryoModule Test Facility (CMTF) followed by a high-power dump 200-Ohm Dump DPI kicker Ion Source & RFQ – Includes two different prototype kickers (50-Ohm & 200-Ohm), all scraper paddles, prototype absorber, Differential Pumping Insert (DPI) and various diagnostics Absorber Fast acting Emittance F-scraper prototype valve scanner / DPI RWCM Fast Faraday 50-Ohm kicker 200-Ohm kicker ACCT Cup prototype prototype 9 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  10. 0Fermilab Beam transport • Demonstrated 96% availability (over 24 hours) for beam with nominal MEBT parameters – 5 mA × 0.55 ms × 2.1 MeV × 20 Hz = 115 W with appropriate bunch pattern for Booster injection • Up to 10 mA to the dump with negligible uncontrolled losses – Dedicated distributed scraping system removes ~2% (halo) • Measured beam emittances near the end of the MEBT – 0.22/0.34 mm mrad (rms, n) Transverse/Longitudinal 4 50 -----------------------------~ + FFC Data - Tracewin (« ,=O , P ,=1.2 mm/mrad, c,=0. 34 mm-mrad) ~400 I (.) Angle, mrad lL lL :. j350 .c Vertical phase- "' Bunch length vs. bunching space with 300 e rms,n = 0.22 mm mrad a: cavity #2 voltage (5 mA, Allison scanner 10 m s pulse) and ‘fit’ with (5 mA, 10 m s 2~ -- -= 35 ':--- 4 ""' 0 --""' 4 "=5 -- -= 50 =--- s,f,.s ,--- - -- -==- -----, 1 cf: o -- -= 1 s ----= =- so Tracewin pulse) Position, mm B2 Field (kV) 10 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  11. 0Fermilab Chopping system concept • 2 identical kickers in sync and a beam absorber – Two broadband travelling-wave kickers separate bunches by 6 s – Absorber is rated for 21 kW (i.e. full max. beam power) • Beam comes at 29 mrad to decrease power density to <17 W/mm 2 20 15 to E5 5 0 +-iff-+ttllt- - ttt - ...JW >- -5 -10 -15 -20 --+-..u.J-- ................... -1--- ......... ,,_..__~.;u.swc.--..-'L-IJ/L----- ......... ~~~....., -'---r-...L.J/-.W.,--..-'L....ljl.-'--,- .......... W......--'/-W.,..II...J..,~i--- ........... 12 0 10 14 15 10 iii ii~ If I iii Dlf ~5 E 5 0 >- ·5 3σ envelopes of the transmitted -10 (a) and chopped-out (b) bunches -15 __ ...................... --....._.,...... ....... ..,..... __ .................................... 6 8 14 simulated with TraceWin. 0 2 10 12 4 Position (m) 11 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  12. 0Fermilab Kickers development • Two versions developed in parallel  1 of each prototype installed at PIP2IT “50 - Ohm” “200 - Ohm” ➢ 24 electrodes per plate connected in ➢ Helix as a travelling-wave structure ➢ Driver developed at Fermilab vacuum by 50 Ohm cables ➢ Driver: commercially available linear ▪ Broadband, DC-coupled switches in amplifier push-pull configuration ▪ Concept tested with similar lower-power amplified A. Chen G. Saewert G. Saewert’s poster (WEPML021) D. Sun A. Chen 12 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  13. 0Fermilab Kickers characterization • Both kickers (50-Ohm and 200-Ohm) meet specs D. Sun – For D V = 500 V (nominal), angle of deflection G. Saewert A. Chen B. Chase at the end of either kicker is > 7 mrad (specs) V. Lebedev • Demonstrated arbitrary bunch structure – Kicked bunches intercepted 200-Ohm kicker DPI with a scraper → passing bunches recorded with Resistive Wall Current Monitor (RWCM) Kick Top scraper T. Hamerla partially inserted PIP 2- IT MEBT Wall Current Monitor Signal 0.0200 0.0175 0.0150 ~0.0125 jo.0100 RWCM J 0.0075 0.0050 , - --t f-f-t-f-+HIIIHIII F. Frolov 0.0025 0.0000 G. Saewert 1 800 1000 2.4 m s J. Simmons 13 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

Recommend


More recommend