pfaffian groupoids
play

Pfaffian groupoids Mar a Amelia Salazar CRM, Barcelona December - PowerPoint PPT Presentation

Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Pfaffian groupoids Mar a Amelia Salazar CRM, Barcelona December 10, 2013 Mar a Amelia Salazar Pfaffian groupoids Pfaffian groupoids


  1. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Pfaffian groupoids Mar´ ıa Amelia Salazar CRM, Barcelona December 10, 2013 Mar´ ıa Amelia Salazar Pfaffian groupoids

  2. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Motivation Understand the work of Cartan on Lie Pseudogroups, and the theory of PDE’s using the language of Lie groupoids and Lie algebroids. Mar´ ıa Amelia Salazar Pfaffian groupoids

  3. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Pfaffian groupoid Definition A Pfaffian groupoid ( G , θ ) consists of: G ⇒ M Lie groupoid, θ ∈ Ω 1 ( G , t ∗ E ) point-wise surjective, E → M ∈ Rep ( G ), with ker θ ∩ ker ds involutive, Mar´ ıa Amelia Salazar Pfaffian groupoids

  4. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Pfaffian groupoid Definition A Pfaffian groupoid ( G , θ ) consists of: G ⇒ M Lie groupoid, θ ∈ Ω 1 ( G , t ∗ E ) point-wise surjective, E → M ∈ Rep ( G ), with ker θ ∩ ker ds involutive, with the property that θ is multiplicative: m ∗ θ ( g , h ) = g · pr ∗ 1 θ ( g , h ) + pr ∗ 2 θ ( g , h ) , m , pr 1 , pr 2 : G 2 ⊂ G × G → G . Mar´ ıa Amelia Salazar Pfaffian groupoids

  5. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For the standard action of S 1 on R 2 by rotations, we have the action groupoid over R 2 G := S 1 ⋉ R 2 , s ( α, z ) = z , t ( α, z ) = α · z , and θ = d α ∈ Ω 1 ( G ) . Mar´ ıa Amelia Salazar Pfaffian groupoids

  6. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For the standard action of S 1 on R 2 by rotations, we have the action groupoid over R 2 G := S 1 ⋉ R 2 , s ( α, z ) = z , t ( α, z ) = α · z , and θ = d α ∈ Ω 1 ( G ) . A bisection β of G (i.e. β : R 2 → G , s ◦ β = id and t ◦ β -diffeo) belongs to iff α : R 2 → S 1 is constant . Sol ( G , θ ) = { β | β ∗ θ = 0 } Diff ( R 2 ) ⊃ Γ naive = t ◦ Sol ( G , θ ) = { rotations of the plane } Mar´ ıa Amelia Salazar Pfaffian groupoids

  7. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Jet groupoids and the Cartan form) For M a manifold, consider the pair groupoid M × M ⇒ M . Mar´ ıa Amelia Salazar Pfaffian groupoids

  8. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Jet groupoids and the Cartan form) For M a manifold, consider the pair groupoid M × M ⇒ M . G = J 1 ( M × M ) = { first jets of local diffeos (= bisections) } . The Cartan form θ 1 ∈ Ω 1 ( G ; t ∗ TM ) at X ∈ T j 1 x φ J 1 ( M × M ) is: dpr 1 ( X ) − d x φ ( dpr 2 ( X )) . Mar´ ıa Amelia Salazar Pfaffian groupoids

  9. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Jet groupoids and the Cartan form) For M a manifold, consider the pair groupoid M × M ⇒ M . G = J 1 ( M × M ) = { first jets of local diffeos (= bisections) } . The Cartan form θ 1 ∈ Ω 1 ( G ; t ∗ TM ) at X ∈ T j 1 x φ J 1 ( M × M ) is: dpr 1 ( X ) − d x φ ( dpr 2 ( X )) . Sol ( G , θ 1 ) = { β : M → J 1 ( M × M ) | β = j 1 f , f a local diffeo } correspond to VB-iso F : TM → TM over f s.t F x = d x f . Mar´ ıa Amelia Salazar Pfaffian groupoids

  10. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective Mar´ ıa Amelia Salazar Pfaffian groupoids

  11. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective satisfying: θ ′ takes values in the Lie algebroid A of G , and it is of Lie-type: ker θ ′ ∩ ker ds ′ = ker θ ′ ∩ ker dt ′ , Mar´ ıa Amelia Salazar Pfaffian groupoids

  12. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective satisfying: θ ′ takes values in the Lie algebroid A of G , and it is of Lie-type: ker θ ′ ∩ ker ds ′ = ker θ ′ ∩ ker dt ′ , Lie ( p ) = θ ′ | A ′ , A ′ = Lie ( G ′ ), Mar´ ıa Amelia Salazar Pfaffian groupoids

  13. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective satisfying: θ ′ takes values in the Lie algebroid A of G , and it is of Lie-type: ker θ ′ ∩ ker ds ′ = ker θ ′ ∩ ker dt ′ , Lie ( p ) = θ ′ | A ′ , A ′ = Lie ( G ′ ), dp (ker θ ′ ) ⊂ ker θ , for X , Y ∈ ker θ ′ , δθ ( dp ( X ) , dp ( Y )) = 0 , Mar´ ıa Amelia Salazar Pfaffian groupoids

  14. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of the Classical Lie-prolongation Definition The classical Lie-prolongation space P ( G , θ ) of ( G , θ ) consists of j 1 x β ∈ J 1 G with the property that for any X , Y ∈ T x M θ ( d x β ( X )) = 0 and δθ ( d x β ( X ) , d x β ( Y )) = 0 . Mar´ ıa Amelia Salazar Pfaffian groupoids

  15. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of the Classical Lie-prolongation Definition The classical Lie-prolongation space P ( G , θ ) of ( G , θ ) consists of j 1 x β ∈ J 1 G with the property that for any X , Y ∈ T x M θ ( d x β ( X )) = 0 and δθ ( d x β ( X ) , d x β ( Y )) = 0 . Proposition Whenever P ( G , θ ) ⊂ J 1 G smooth and pr : P ( G , θ ) → G is a submersion, ( P ( G , θ ) , θ (1) = θ 1 | P ( G ,θ ) ) is a Lie-prolongation of ( G , θ ). Mar´ ıa Amelia Salazar Pfaffian groupoids

  16. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For G = S 1 ⋉ R 2 , a bisection β : R 2 → G is of the form β = ( α, id ) , with ( x , y ) �→ α · ( x , y ) a diffeo. Mar´ ıa Amelia Salazar Pfaffian groupoids

  17. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For G = S 1 ⋉ R 2 , a bisection β : R 2 → G is of the form β = ( α, id ) , with ( x , y ) �→ α · ( x , y ) a diffeo. For θ = d α , ( x , y ) β | ∂α ∂ x | ( x , y ) = ∂α P ( G , θ ) = { j 1 ∂ y | ( x , y ) = 0 } Mar´ ıa Amelia Salazar Pfaffian groupoids

  18. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For G = S 1 ⋉ R 2 , a bisection β : R 2 → G is of the form β = ( α, id ) , with ( x , y ) �→ α · ( x , y ) a diffeo. For θ = d α , ( x , y ) β | ∂α ∂ x | ( x , y ) = ∂α P ( G , θ ) = { j 1 ∂ y | ( x , y ) = 0 } Example (Jet groupoid and the Cartan form) For J 1 ( M × M ) and the Cartan form θ 1 , and ( θ 1 ) (1) = θ 2 , P ( J 1 ( M × M ) , θ 1 ) = J 2 ( M × M ) , where J 2 ( M × M ) is the second jets of local diffeos, and θ 2 is the Cartan form. Mar´ ıa Amelia Salazar Pfaffian groupoids

  19. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Spencer operator Definition Let A → M be a Lie algebroid and let E ∈ Rep ( A ) with associated connection denoted by ∇ . Mar´ ıa Amelia Salazar Pfaffian groupoids

  20. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Spencer operator Definition Let A → M be a Lie algebroid and let E ∈ Rep ( A ) with associated connection denoted by ∇ . A Spencer operator is a bilinear operator D : X ( M ) × Γ( A ) → Γ( E ) , ( X , α ) �→ D X ( α ) together with a surjective V.B-map l : A → E , which is C ∞ ( M )-linear in X , satisfies the Leibniz identity relative to l : D X ( f α ) = fD X ( α ) + L X ( f ) l ( α ) , Mar´ ıa Amelia Salazar Pfaffian groupoids

Recommend


More recommend