Pension fund ALM with Multivariate Second order Stochastic Dominance constraints Sebastiano Vitali, Vittorio Moriggia, MiloΕ‘ Kopa University of Bergamo Charles University Chemnitz, CMS2019
2 Purpose of the work To model and implement an Asset Liability Management problem of a Pension Fund in a Defined Benefit framework having: - a short-term profitability target, - a medium-term insurance risk-adjusted return - a long-term strategic objective Definition of multivariate second order stochastic dominance between the wealth of the Pension Fund and a benchmark wealth The multivariate Second order Stochastic Dominance (SSD) is formulated with three alternatives which we investigate
3 The multivariate SSD
4 Univariate SSD Let (Ξ©, πΊ, π) denote a probability space and let π and π be two random variables having as cumulative distribution functions πΊ π and π . πΊ Letβs define the twice cumulative distribution function as π 2 (π) = ΰΆ± πΊ πΊ π π½ dπ½ π ββ We say that π dominates π in the Second order Stochastic Dominance (SSD) sense, π β» πππΈ π , if 2 π β€ πΊ 2 π , πΊ βπ β π π π If the random variables are discrete and then represented by random vectors X and Y , and if the realizations are equiprobable , then the SSD is equivalent to X β€ WY where W is a double stochastic matrix.
5 Multivariate SSD When we consider multivariate random variables, we need to re-think the SSD relation. Assume that a multivariate random variable π has π dimensions and then we observe π π’ , π’ = 1, β¦ , π univariate random variables. If the random variable is discrete , each univariate random variable π π’ can be represented with with a vector X π’ , then π can be represented with a matrix having π columns, one for each dimension: β¦ X 1 X π π¦ 1,1 β¦ π¦ 1,π β¦ β¦ β¦ = π¦ π,1 β¦ π¦ π,π The meaning of π β» πππΈ π is not unique and can be declined in various ways. We analyze three of them.
6 Component-wise Multivariate SSD (C-MSSD) π β» πππΈ π iff π π’ β» πππΈ π’ π βπ’ (disjointly) π’ β» πππΈ 1 β» πππΈ 2 β» πππΈ 3
7 Linear Multivariate SSD (Lin-MSSD) π π ΰ΄€ lin π iff Ο π’=1 π = ΰ· π π’ β π π’ , βπ π’ β₯ 0, ΰ· π π’ = 1 π π π π β» πππΈ π π’ π π’ β» πππΈ Ο π’=1 π π’ π π’ , βπ π’ β₯ 0| Ο π’=1 π π’ = 1 π’=1 π’=1 β» πππΈ βπ π’
8 MultiDimension Multivariate SSD (MD-MSSD) π β» πππΈ π iff π π’ β» πππΈ π βπ’ (jointly) π’ β» πππΈ
9 Multivariate SSD The three possible definitions: β’ The Component-wise Multivariate SSD (C-MSSD): π β» πππΈ π iff π π’ β» πππΈ π’ π βπ’ (disjointly) π’ X π’ β€ W π’ Y π’ , βπ’ β’ The Linear Multivariate SSD (Lin-MSSD): Dencheva and Ruszczynski (2009), Dentcheva and Wolfhagen (2015, 2016) lin π iff Ο π’=1 π π π π π’ π π’ β» πππΈ Ο π’=1 π’ , βπ π’ β₯ 0| Ο π’=1 π β» πππΈ π π’ π π π’ = 1 π β€ X β€ W (π) π β€ Y , π βπ β₯ 0, Ξ£ π’=1 π π’ = 1 β’ The MultiDimension Multivariate SSD (MD-MSSD): π β» πππΈ π iff π π’ β» πππΈ π βπ’ (jointly) π’ X π’ β€ WY π’ , a βπ’
10 Multivariate SSD The three possible definitions: β’ The Component-wise Multivariate SSD (C-MSSD): C-MSSD π β» πππΈ π iff π π’ β» πππΈ π’ π βπ’ (disjointly) π’ X π’ β€ W π’ Y π’ , βπ’ β’ The Linear Multivariate SSD (Lin-MSSD): Lin-MSSD Dencheva and Ruszczynski (2009), Dentcheva and Wolfhagen (2015, 2016) lin π iff Ο π’=1 π π π π π’ π π’ β» πππΈ Ο π’=1 π’ , βπ π’ β₯ 0| Ο π’=1 π β» πππΈ π π’ π π π’ = 1 π β€ X β€ W (π) π β€ Y , π βπ β₯ 0, Ξ£ π’=1 π π’ = 1 β’ The MultiDimension Multivariate SSD (MD-MSSD): MD-MSSD π β» πππΈ π iff π π’ β» πππΈ π βπ’ (jointly) π’ X π’ β€ WY π’ , a βπ’
11 The ALM model
12 Approach structure β’ Portfolio Universe Financial Datafeed β’ Risk factors β’ Econometric model definition β’ Econometric model estimation Simulation β’ Population model setting input β’ Stochastic tree structure β’ Nodal financial coefficient generation Monte Carlo β’ Monte Carlo scenario generation simulator β’ Population actuarial simulation β’ Dynamic portfolio model Stochastic Programming β’ Stochastic program solution Solution analysis
13 Extended Asset Universe Asset Class Asset List Lower & Upper Cash 30% Cash 0% Floaters Treasury 1-3y Treasury 3-5y Treasuries 0% 100% Treasury 5-7y Treasury 7-10y Treasury 10+y Securitized 0% 100% Securitized Corporate Inv Grade Corporate 0% 100% Corporate High Yield 0% 50% Public Equity Public Equity Real Estate 0% 20% Real Estate
14 Notation for sets Time partition from time 0 to year 20 T = {π’ 0 = 0,1,2, β¦ , πΌ} Set of decision times T π = {π’ 0 = 0,1,2,3, 5, 10, πΌ } Set of intermediate stages T πππ’ = T\{T d } = {4,6,7,8, 9, 11, β¦ , 19 ΰ΅ Set of scenarios } π‘ = {1,2, β¦ , π Financial assets π β {1,2, β¦ , 14} Bond asset classes π½ 1 : π = 1,2, 3, 4, 5 , π½ 2 : π = {6,7,8} Public Equity, Real Estate and Derivatives π½ 3 : π = 9 , π½ 4 : π = {10} , π½ 5 : π = {11,12,13,14} Asset total set π½ = α« π½ π π=1,β¦,5
15 Notation for investment variables Buying decision in stage t , scenario s , of asset i + π¦ π,π’,π‘ Selling in stage t , scenario s , of asset i that was β π¦ π,β,π’,π‘ bought in h Expiry of a fixed-income asset in stage t , ππ¦π π¦ π,β,π’,π‘ scenario s , of asset i that was bought in h Holding in stage t , scenario s , of asset i that π¦ π,β,π’,π‘ was bought in h + β π¨ π’,π‘ β Cash account in stage t , scenario s π¨ π’,π‘ = π¨ π’,π‘ π Sponsors β unexpected contributions Ξ¦ π’,π‘
16 Variable definitions ππΉπ ππππ£π’ Net pension payments π π’,π‘ Defined benefit obligation (DBO) Ξ π’,π‘ ππππ£π’ π π,π’ π ,π‘ = ΰ· π¦ π,β,π’ π ,π‘ Asset value π π,π’,π‘ β<π’ π Asset portfolio value π·π π’ π ,π‘ + π·π π’ π ,π‘ = ΰ· π π,π’ π ,π‘ + π¨ π’ π ,π‘ πβπ½ B π’ π ,π‘ B π’ π ,π‘ = Ξ π’ π ,π‘ β π·π π’ π ,π‘ Net Defined benefit obligation π π π’ π ,π‘ = ΰ· π¦ π,β,π’ π β1 β π π,π’ π ,π‘ + β<π’ π ,βππ π Intermediate net payments π π’ π ,π‘ ππ¦π ππΉπ ΰ· π¦ π,β,π’ π ,π‘ βπ π’ π ,π‘ β<π’ π ,π’ π βββ₯π π
17 Variable definitions 1 Liquidity gap plus ALM risk πΊ π’ π ,π‘ πΊ π’ π ,π‘ = π» π’ π ,π‘ + πΏ π’ π ,π‘ + πΊ π’ πβ1 ,π‘ , Ξ¨ π’ 0,π‘ = 0 ππΉπ β π¨ π» π’ π ,π‘ = L π’ π ,π‘ ΰ· π β,π‘ 1 + π π’,π‘ π» π’ π ,π‘ π’ πβ1<β<π’π Liquidity gap 1,π½ππ β ππ¦π βΞ π’ π ,π‘ ΰ· π¦ π,β,π’ π ,π‘ β<π’ π ,π’ π ββ=π π 1 K π’ π ,π‘ + = ππ + β t j β t jβ1 β Ξ π¦ π’ π ,π‘ β Ξ Ξ π’ π ,π‘ 1 K π’ π ,π‘ ALM risk β β ππ β β t j β t jβ1 β Ξ π¦π’ π ,π‘ β Ξ Ξπ’ π ,π‘
18 Variable definitions 1,π½ππ + π» π’ π ,π‘ π½ππ = Ξ π’ π ,π‘ π½ππ Realized portfolio return Ξ π’ π ,π‘ Ξ π’ π ,π‘ 1,π½ππ Coupon return β¦ Ξ π’ π ,π‘ β¦ Capital gain return π» π’ π ,π‘ π½ππ + ππ»π π’ π ,π‘ β ππ»π π’ 0 ,π‘ Ξ π’ π ,π‘ = Ξ π’ π ,π‘ Total portfolio return Ξ π’ π ,π‘ Unrealized gain and losses ππ»π π’ π ,π‘ ππ»π π’ π ,π‘ = ΰ· ΰ· π¦ π,β,π’ π ,π‘ β π π,β,π’ π ,π‘ πβπ½ β<π’ π ,βπ ΰ· π Cumulated π½ππ,ππ£π π½ππ,ππ£π = ΰ· Ξ π’,π‘ π½ππ Ξ π’,π‘ Ξ π’ π ,π‘ realized portfolio return π’ π β€π’ π Cumulated π½ππ,ππ£π + ππ»π π’ π ,π‘ β ππ»π π’ 0 ,π‘ ππ£π = Ξ π’,π‘ ππ£π Ξ π’ π ,π‘ Ξ π’ π ,π‘ total portfolio return
Recommend
More recommend