pension fund alm with multivariate second order
play

Pension fund ALM with Multivariate Second order Stochastic - PowerPoint PPT Presentation

Pension fund ALM with Multivariate Second order Stochastic Dominance constraints Sebastiano Vitali, Vittorio Moriggia, Milo Kopa University of Bergamo Charles University Chemnitz, CMS2019 2 Purpose of the work To model and implement an


  1. Pension fund ALM with Multivariate Second order Stochastic Dominance constraints Sebastiano Vitali, Vittorio Moriggia, MiloΕ‘ Kopa University of Bergamo Charles University Chemnitz, CMS2019

  2. 2 Purpose of the work To model and implement an Asset Liability Management problem of a Pension Fund in a Defined Benefit framework having: - a short-term profitability target, - a medium-term insurance risk-adjusted return - a long-term strategic objective Definition of multivariate second order stochastic dominance between the wealth of the Pension Fund and a benchmark wealth The multivariate Second order Stochastic Dominance (SSD) is formulated with three alternatives which we investigate

  3. 3 The multivariate SSD

  4. 4 Univariate SSD Let (Ξ©, 𝐺, 𝑄) denote a probability space and let π‘Œ and 𝑍 be two random variables having as cumulative distribution functions 𝐺 π‘Œ and 𝑍 . 𝐺 Let’s define the twice cumulative distribution function as πœƒ 2 (πœƒ) = ΰΆ± 𝐺 𝐺 π‘Œ 𝛽 d𝛽 π‘Œ βˆ’βˆž We say that π‘Œ dominates 𝑍 in the Second order Stochastic Dominance (SSD) sense, π‘Œ ≻ 𝑇𝑇𝐸 𝑍 , if 2 πœƒ ≀ 𝐺 2 πœƒ , 𝐺 βˆ€πœƒ ∈ 𝑆 π‘Œ 𝑍 If the random variables are discrete and then represented by random vectors X and Y , and if the realizations are equiprobable , then the SSD is equivalent to X ≀ WY where W is a double stochastic matrix.

  5. 5 Multivariate SSD When we consider multivariate random variables, we need to re-think the SSD relation. Assume that a multivariate random variable 𝒀 has π‘ˆ dimensions and then we observe π‘Œ 𝑒 , 𝑒 = 1, … , π‘ˆ univariate random variables. If the random variable is discrete , each univariate random variable π‘Œ 𝑒 can be represented with with a vector X 𝑒 , then 𝒀 can be represented with a matrix having π‘ˆ columns, one for each dimension: … X 1 X π‘ˆ 𝑦 1,1 … 𝑦 1,π‘ˆ … … … = 𝑦 𝑇,1 … 𝑦 𝑇,π‘ˆ The meaning of 𝒀 ≻ 𝑇𝑇𝐸 𝒁 is not unique and can be declined in various ways. We analyze three of them.

  6. 6 Component-wise Multivariate SSD (C-MSSD) π‘Œ ≻ 𝑇𝑇𝐸 𝑍 iff π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 𝑒 𝑍 βˆ€π‘’ (disjointly) 𝑒 ≻ 𝑇𝑇𝐸 1 ≻ 𝑇𝑇𝐸 2 ≻ 𝑇𝑇𝐸 3

  7. 7 Linear Multivariate SSD (Lin-MSSD) π‘ˆ π‘ˆ ΰ΄€ lin 𝑍 iff Οƒ 𝑒=1 π‘Œ = ෍ π‘Œ 𝑒 β‹… 𝑑 𝑒 , βˆ€π‘‘ 𝑒 β‰₯ 0, ෍ 𝑑 𝑒 = 1 π‘ˆ π‘ˆ π‘ˆ π‘Œ ≻ 𝑇𝑇𝐸 𝑑 𝑒 π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 Οƒ 𝑒=1 𝑑 𝑒 𝑍 𝑒 , βˆ€π‘‘ 𝑒 β‰₯ 0| Οƒ 𝑒=1 𝑑 𝑒 = 1 𝑒=1 𝑒=1 ≻ 𝑇𝑇𝐸 βˆ€π‘‘ 𝑒

  8. 8 MultiDimension Multivariate SSD (MD-MSSD) π‘Œ ≻ 𝑇𝑇𝐸 𝑍 iff π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 𝑍 βˆ€π‘’ (jointly) 𝑒 ≻ 𝑇𝑇𝐸

  9. 9 Multivariate SSD The three possible definitions: β€’ The Component-wise Multivariate SSD (C-MSSD): π‘Œ ≻ 𝑇𝑇𝐸 𝑍 iff π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 𝑒 𝑍 βˆ€π‘’ (disjointly) 𝑒 X 𝑒 ≀ W 𝑒 Y 𝑒 , βˆ€π‘’ β€’ The Linear Multivariate SSD (Lin-MSSD): Dencheva and Ruszczynski (2009), Dentcheva and Wolfhagen (2015, 2016) lin 𝑍 iff Οƒ 𝑒=1 π‘ˆ π‘ˆ π‘ˆ 𝑑 𝑒 π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 Οƒ 𝑒=1 𝑒 , βˆ€π‘‘ 𝑒 β‰₯ 0| Οƒ 𝑒=1 π‘Œ ≻ 𝑇𝑇𝐸 𝑑 𝑒 𝑍 𝑑 𝑒 = 1 𝐝 ⊀ X ≀ W (𝐝) 𝐝 ⊀ Y , π‘ˆ βˆ€π β‰₯ 0, Ξ£ 𝑒=1 𝑑 𝑒 = 1 β€’ The MultiDimension Multivariate SSD (MD-MSSD): π‘Œ ≻ 𝑇𝑇𝐸 𝑍 iff π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 𝑍 βˆ€π‘’ (jointly) 𝑒 X 𝑒 ≀ WY 𝑒 , a βˆ€π‘’

  10. 10 Multivariate SSD The three possible definitions: β€’ The Component-wise Multivariate SSD (C-MSSD): C-MSSD π‘Œ ≻ 𝑇𝑇𝐸 𝑍 iff π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 𝑒 𝑍 βˆ€π‘’ (disjointly) 𝑒 X 𝑒 ≀ W 𝑒 Y 𝑒 , βˆ€π‘’ β€’ The Linear Multivariate SSD (Lin-MSSD): Lin-MSSD Dencheva and Ruszczynski (2009), Dentcheva and Wolfhagen (2015, 2016) lin 𝑍 iff Οƒ 𝑒=1 π‘ˆ π‘ˆ π‘ˆ 𝑑 𝑒 π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 Οƒ 𝑒=1 𝑒 , βˆ€π‘‘ 𝑒 β‰₯ 0| Οƒ 𝑒=1 π‘Œ ≻ 𝑇𝑇𝐸 𝑑 𝑒 𝑍 𝑑 𝑒 = 1 𝐝 ⊀ X ≀ W (𝐝) 𝐝 ⊀ Y , π‘ˆ βˆ€π β‰₯ 0, Ξ£ 𝑒=1 𝑑 𝑒 = 1 β€’ The MultiDimension Multivariate SSD (MD-MSSD): MD-MSSD π‘Œ ≻ 𝑇𝑇𝐸 𝑍 iff π‘Œ 𝑒 ≻ 𝑇𝑇𝐸 𝑍 βˆ€π‘’ (jointly) 𝑒 X 𝑒 ≀ WY 𝑒 , a βˆ€π‘’

  11. 11 The ALM model

  12. 12 Approach structure β€’ Portfolio Universe Financial Datafeed β€’ Risk factors β€’ Econometric model definition β€’ Econometric model estimation Simulation β€’ Population model setting input β€’ Stochastic tree structure β€’ Nodal financial coefficient generation Monte Carlo β€’ Monte Carlo scenario generation simulator β€’ Population actuarial simulation β€’ Dynamic portfolio model Stochastic Programming β€’ Stochastic program solution Solution analysis

  13. 13 Extended Asset Universe Asset Class Asset List Lower & Upper Cash 30% Cash 0% Floaters Treasury 1-3y Treasury 3-5y Treasuries 0% 100% Treasury 5-7y Treasury 7-10y Treasury 10+y Securitized 0% 100% Securitized Corporate Inv Grade Corporate 0% 100% Corporate High Yield 0% 50% Public Equity Public Equity Real Estate 0% 20% Real Estate

  14. 14 Notation for sets Time partition from time 0 to year 20 T = {𝑒 0 = 0,1,2, … , 𝐼} Set of decision times T 𝑒 = {𝑒 0 = 0,1,2,3, 5, 10, 𝐼 } Set of intermediate stages T π‘—π‘œπ‘’ = T\{T d } = {4,6,7,8, 9, 11, … , 19 ࡟ Set of scenarios } 𝑑 = {1,2, … , 𝑇 Financial assets 𝑗 ∈ {1,2, … , 14} Bond asset classes 𝐽 1 : 𝑗 = 1,2, 3, 4, 5 , 𝐽 2 : 𝑗 = {6,7,8} Public Equity, Real Estate and Derivatives 𝐽 3 : 𝑗 = 9 , 𝐽 4 : 𝑗 = {10} , 𝐽 5 : 𝑗 = {11,12,13,14} Asset total set 𝐽 = ራ 𝐽 𝑙 𝑙=1,…,5

  15. 15 Notation for investment variables Buying decision in stage t , scenario s , of asset i + 𝑦 𝑗,𝑒,𝑑 Selling in stage t , scenario s , of asset i that was βˆ’ 𝑦 𝑗,β„Ž,𝑒,𝑑 bought in h Expiry of a fixed-income asset in stage t , π‘“π‘¦π‘ž 𝑦 𝑗,β„Ž,𝑒,𝑑 scenario s , of asset i that was bought in h Holding in stage t , scenario s , of asset i that 𝑦 𝑗,β„Ž,𝑒,𝑑 was bought in h + βˆ’ 𝑨 𝑒,𝑑 βˆ’ Cash account in stage t , scenario s 𝑨 𝑒,𝑑 = 𝑨 𝑒,𝑑 𝑙 Sponsors ’ unexpected contributions Ξ¦ 𝑒,𝑑

  16. 16 Variable definitions π‘‚πΉπ‘ˆ π‘—π‘œπ‘žπ‘£π‘’ Net pension payments 𝑀 𝑒,𝑑 Defined benefit obligation (DBO) Ξ› 𝑒,𝑑 π‘—π‘œπ‘žπ‘£π‘’ π‘Œ 𝑗,𝑒 π‘˜ ,𝑑 = ෍ 𝑦 𝑗,β„Ž,𝑒 π‘˜ ,𝑑 Asset value π‘Œ 𝑗,𝑒,𝑑 β„Ž<𝑒 π‘˜ Asset portfolio value π·π‘Œ 𝑒 π‘˜ ,𝑑 + π·π‘Œ 𝑒 π‘˜ ,𝑑 = ෍ π‘Œ 𝑗,𝑒 π‘˜ ,𝑑 + 𝑨 𝑒 π‘˜ ,𝑑 π‘—βˆˆπ½ B 𝑒 π‘˜ ,𝑑 B 𝑒 π‘˜ ,𝑑 = Ξ› 𝑒 π‘˜ ,𝑑 βˆ’ π·π‘Œ 𝑒 π‘˜ ,𝑑 Net Defined benefit obligation π‘Ž 𝑀 𝑒 π‘˜ ,𝑑 = ෍ 𝑦 𝑗,β„Ž,𝑒 π‘˜ βˆ’1 βˆ™ 𝜊 𝑗,𝑒 π‘˜ ,𝑑 + β„Ž<𝑒 π‘˜ ,β„Žπœ—π‘ˆ π‘Ž Intermediate net payments 𝑀 𝑒 π‘˜ ,𝑑 π‘“π‘¦π‘ž π‘‚πΉπ‘ˆ ෍ 𝑦 𝑗,β„Ž,𝑒 π‘˜ ,𝑑 βˆ’π‘€ 𝑒 π‘˜ ,𝑑 β„Ž<𝑒 π‘˜ ,𝑒 π‘˜ βˆ’β„Žβ‰₯π‘ˆ 𝑗

  17. 17 Variable definitions 1 Liquidity gap plus ALM risk 𝛺 𝑒 π‘˜ ,𝑑 𝛺 𝑒 π‘˜ ,𝑑 = 𝛻 𝑒 π‘˜ ,𝑑 + 𝐿 𝑒 π‘˜ ,𝑑 + 𝛺 𝑒 π‘˜βˆ’1 ,𝑑 , Ξ¨ 𝑒 0,𝑑 = 0 π‘‚πΉπ‘ˆ βˆ’ 𝑨 𝛻 𝑒 π‘˜ ,𝑑 = L 𝑒 π‘˜ ,𝑑 ෍ 𝑀 β„Ž,𝑑 1 + πœ‚ 𝑒,𝑑 𝛻 𝑒 π‘˜ ,𝑑 𝑒 π‘˜βˆ’1<β„Ž<π‘’π‘˜ Liquidity gap 1,π½π‘‚π‘Š βˆ’ π‘“π‘¦π‘ž βˆ’Ξ  𝑒 π‘˜ ,𝑑 ෍ 𝑦 𝑗,β„Ž,𝑒 π‘˜ ,𝑑 β„Ž<𝑒 π‘˜ ,𝑒 π‘˜ βˆ’β„Ž=π‘ˆ 𝑗 1 K 𝑒 π‘˜ ,𝑑 + = 𝑒𝑠 + βˆ™ t j βˆ’ t jβˆ’1 β‹… Ξ” 𝑦 𝑒 π‘˜ ,𝑑 βˆ’ Ξ” Ξ› 𝑒 π‘˜ ,𝑑 1 K 𝑒 π‘˜ ,𝑑 ALM risk βˆ’ βˆ’ 𝑒𝑠 βˆ’ βˆ™ t j βˆ’ t jβˆ’1 β‹… Ξ” 𝑦𝑒 π‘˜ ,𝑑 βˆ’ Ξ” Λ𝑒 π‘˜ ,𝑑

  18. 18 Variable definitions 1,π½π‘‚π‘Š + 𝐻 𝑒 π‘˜ ,𝑑 π½π‘‚π‘Š = Ξ  𝑒 π‘˜ ,𝑑 π½π‘‚π‘Š Realized portfolio return Ξ  𝑒 π‘˜ ,𝑑 Ξ  𝑒 π‘˜ ,𝑑 1,π½π‘‚π‘Š Coupon return … Ξ  𝑒 π‘˜ ,𝑑 … Capital gain return 𝐻 𝑒 π‘˜ ,𝑑 π½π‘‚π‘Š + 𝑉𝐻𝑀 𝑒 π‘˜ ,𝑑 βˆ’ 𝑉𝐻𝑀 𝑒 0 ,𝑑 Ξ  𝑒 π‘˜ ,𝑑 = Ξ  𝑒 π‘˜ ,𝑑 Total portfolio return Ξ  𝑒 π‘˜ ,𝑑 Unrealized gain and losses 𝑉𝐻𝑀 𝑒 π‘˜ ,𝑑 𝑉𝐻𝑀 𝑒 π‘˜ ,𝑑 = ෍ ෍ 𝑦 𝑗,β„Ž,𝑒 π‘˜ ,𝑑 βˆ™ πœ“ 𝑗,β„Ž,𝑒 π‘˜ ,𝑑 π‘—βˆˆπ½ β„Ž<𝑒 π‘˜ ,β„Žπœ— ΰ·  π‘ˆ Cumulated π½π‘‚π‘Š,𝑑𝑣𝑛 π½π‘‚π‘Š,𝑑𝑣𝑛 = ෍ Ξ  𝑒,𝑑 π½π‘‚π‘Š Ξ  𝑒,𝑑 Ξ  𝑒 𝑙 ,𝑑 realized portfolio return 𝑒 𝑙 ≀𝑒 π‘˜ Cumulated π½π‘‚π‘Š,𝑑𝑣𝑛 + 𝑉𝐻𝑀 𝑒 π‘˜ ,𝑑 βˆ’ 𝑉𝐻𝑀 𝑒 0 ,𝑑 𝑑𝑣𝑛 = Ξ  𝑒,𝑑 𝑑𝑣𝑛 Ξ  𝑒 π‘˜ ,𝑑 Ξ  𝑒 π‘˜ ,𝑑 total portfolio return

Recommend


More recommend