Parton Energy Loss in Generalized High-twist Approach Yuan-Yuan Zhang Central China Normal University (CCNU) Collaborators: Guang-You Qin, Xin-Nian Wang ATHIC 2018 Hefei, China
Outline Introduction Generalized High Twist approach Results and approximations Summary ATHIC 2018 1/20
Parton energy loss in medium High energy partons travel through hot QGP or cold nuclei (eA DIS process) e Energy loss mechanisms reveal medium A properties Parton energy loss mechanisms l ⊥ l ⊥ k ⊥ vacuum medium induced collisional energy loss { radiative energy loss ATHIC 2018 Introduction 2/20
<latexit sha1_base64="iT/I9/lduOGbFi8cp9QUDV/EB4M=">AB8HicbVDLSgNBEOz1GeMr6tHLYBA8Lbsh6gY8BLx4jGAekixhdjJhszMLjOzQljyFV48KOLVz/Hm3zh5IGosaCiqunuihLOtPG8T2dldW19YzO3ld/e2d3bLxwcNnScKkLrJOaxakVYU84krRtmOG0limIRcdqMRtdTv/lAlWaxvDPjhIYCDyTrM4KNle5N+skVCWTbqHouZVKOTgPkCXBReCXkO96M3yTIixQ6xY+Or2YpIJKQzjWu17iQkzrAwjnE7ynVTBJMRHtC2pRILqsNsdvAEnVqlh/qxsiUNmqk/JzIstB6LyHYKbIb6rzcV/PaqekHYcZkhoqyXxRP+XIxGj6PeoxRYnhY0swUczeisgQK0yMzShvQ1h6eZk0Sq7vuf5tuVi9WsSRg2M4gTPw4RKqcAM1qAMBAY/wDC+Ocp6cV+dt3riLGaO4Bec9y+oEZDy</latexit> <latexit sha1_base64="iT/I9/lduOGbFi8cp9QUDV/EB4M=">AB8HicbVDLSgNBEOz1GeMr6tHLYBA8Lbsh6gY8BLx4jGAekixhdjJhszMLjOzQljyFV48KOLVz/Hm3zh5IGosaCiqunuihLOtPG8T2dldW19YzO3ld/e2d3bLxwcNnScKkLrJOaxakVYU84krRtmOG0limIRcdqMRtdTv/lAlWaxvDPjhIYCDyTrM4KNle5N+skVCWTbqHouZVKOTgPkCXBReCXkO96M3yTIixQ6xY+Or2YpIJKQzjWu17iQkzrAwjnE7ynVTBJMRHtC2pRILqsNsdvAEnVqlh/qxsiUNmqk/JzIstB6LyHYKbIb6rzcV/PaqekHYcZkhoqyXxRP+XIxGj6PeoxRYnhY0swUczeisgQK0yMzShvQ1h6eZk0Sq7vuf5tuVi9WsSRg2M4gTPw4RKqcAM1qAMBAY/wDC+Ocp6cV+dt3riLGaO4Bec9y+oEZDy</latexit> <latexit sha1_base64="iT/I9/lduOGbFi8cp9QUDV/EB4M=">AB8HicbVDLSgNBEOz1GeMr6tHLYBA8Lbsh6gY8BLx4jGAekixhdjJhszMLjOzQljyFV48KOLVz/Hm3zh5IGosaCiqunuihLOtPG8T2dldW19YzO3ld/e2d3bLxwcNnScKkLrJOaxakVYU84krRtmOG0limIRcdqMRtdTv/lAlWaxvDPjhIYCDyTrM4KNle5N+skVCWTbqHouZVKOTgPkCXBReCXkO96M3yTIixQ6xY+Or2YpIJKQzjWu17iQkzrAwjnE7ynVTBJMRHtC2pRILqsNsdvAEnVqlh/qxsiUNmqk/JzIstB6LyHYKbIb6rzcV/PaqekHYcZkhoqyXxRP+XIxGj6PeoxRYnhY0swUczeisgQK0yMzShvQ1h6eZk0Sq7vuf5tuVi9WsSRg2M4gTPw4RKqcAM1qAMBAY/wDC+Ocp6cV+dt3riLGaO4Bec9y+oEZDy</latexit> <latexit sha1_base64="iT/I9/lduOGbFi8cp9QUDV/EB4M=">AB8HicbVDLSgNBEOz1GeMr6tHLYBA8Lbsh6gY8BLx4jGAekixhdjJhszMLjOzQljyFV48KOLVz/Hm3zh5IGosaCiqunuihLOtPG8T2dldW19YzO3ld/e2d3bLxwcNnScKkLrJOaxakVYU84krRtmOG0limIRcdqMRtdTv/lAlWaxvDPjhIYCDyTrM4KNle5N+skVCWTbqHouZVKOTgPkCXBReCXkO96M3yTIixQ6xY+Or2YpIJKQzjWu17iQkzrAwjnE7ynVTBJMRHtC2pRILqsNsdvAEnVqlh/qxsiUNmqk/JzIstB6LyHYKbIb6rzcV/PaqekHYcZkhoqyXxRP+XIxGj6PeoxRYnhY0swUczeisgQK0yMzShvQ1h6eZk0Sq7vuf5tuVi9WsSRg2M4gTPw4RKqcAM1qAMBAY/wDC+Ocp6cV+dt3riLGaO4Bec9y+oEZDy</latexit> Radiative energy loss:assumptions Approaches to radiative energy loss : BDMPS-Z, GLV, AMY, SCET, High Twist Scattering Center : Static or Dynamic? Static: no energy transfer Extension of GLV to dynamic S.C. (BDMPS-Z, GLV) Djordjevic,Heinz PRL 101,022302 Dynamic: both momentum and energy transfer Radiated Gluon : Soft or hard ? Discussion on soft appr. of GLV z 0 (BDMPS-Z, GLV, SCET) Blagojevic et al . arXiv:1804.07593 z finite Transverse momentum transfer : smaller or same order ? l ⊥ l ⊥ (High Twist) k ⊥ ⌧ l ⊥ k ⊥ k ⊥ ∼ l ⊥ ATHIC 2018 Introduction 3/20
Semi-inclusive Deeply Inelastic Scattering l 2 l 1 l h q Z Ap lepton-nucleus scattering e ( l 1 ) + A ( Ap ) → e ( l 2 ) + h ( l h ) + Z identify one hadron in final state cross section and hadronic tensor d σ W µ ν q e 2 P d σ = e 4 d 4 l 2 2 )1 Z q (2 π ) 4 2 πδ ( l 2 2 L µ ν W µ ν 2 s q 4 ATHIC 2018 Introduction 4/20
Collinear Factorization for SIDIS Factorization Separate non-perturbative part (pdf, fragmentation function) from perturbative part (hard scattering) SIDIS process C ollinear factorization when final hadron integrated l h ⊥ hadronic tensor dW µ ν Z S (0) q ( x ) H µ ν dxf A = (0) D q → h ( z h ) l h q q dz h µ S ν l q xp x 1 p quark distribution function f A q ( x ) Ap Ap D q → h ( z h ) quark fragmentation function y 0 X handbag diagram ATHIC 2018 Introduction 5/20
Factorization of Medium Induced Radiation l High Twist approach q q l h S l q Collinear factorization x 3 p + k ⊥ x 2 p + k ⊥ xp x 1 p XF Guo, XN Wang (2000) PRL 85 (17), 3591 XN Wang and XF Guo (2001) Nucl. Phys. A 696, 788 y y 1 y 2 0 X Z dy − dW µ ⌫ Z 1 d 2 y 1 ⊥ dz D (1) q (2 ⇡ ) 2 d 2 y 2 ⊥ d 2 k ⊥ e − i ~ k ⊥ · ( ~ y 2 ⊥ ) 2 ⇡ dy − 1 dy − y 1 ⊥ − ~ = z D q → h ( z h /z ) 2 dz h z h 1 2 < A | ¯ y 1 ⊥ ) q ( y − ) | A > H µ ⌫ q (0) � + A + ( y − y 2 ⊥ ) A + ( y − D ( k ⊥ , y − , y − 1 , y − 2 , ~ 1 , ~ 2 , p, q, z ) Collinear expansion of hard part D ( k ⊥ = 0) + ∂ H µ ν � H µ ν 2 , p, q, z ) = H µ ν D ( k ⊥ , y − , y − 1 , y − D � k α � ⊥ ∂ k α approximation � k ⊥ ⌧ l ⊥ ⊥ k ⊥ =0 � ∂ 2 H µ ν + 1 � ⊥ k β k α D ⊥ + · · · � ⊥ k β 2 ∂ k α � � ⊥ k ⊥ =0 contribute to gauge link of initial quark PDF k ⊥ = 0 contribute zero for unpolarized beam k α ⊥ ATHIC 2018 Generalized HT approach 6/20
<latexit sha1_base64="i+uRv7Uf7IaSVDs7hacaL/qc+Q=">ADSHicbVJLbxMxEN7d8ijhlcKRy4iKaqO2YTcqkEocilqhHhAqEmkqxYnlOE7Wyr5qe0sTyz+PC0du/AYuHECIG948CrSMtNLs9834+2Y0/TzmUgXBF9dbuXb9xs3VW5Xbd+7eu19de3As0JQ1qJZnImTPpEs5ilrKa5idpILRpJ+zNr98X7Jt8+YkDxL36tJzroJGaV8yClRFsJrbg8NBaF6AO2eRkBKC0M1gd+WDs1YCw+xZEBJHkCGzCvRSTOI4Kl0Q2UcwP7+PWCKf/hD/0WU7Ngws1pr2F0uD01AIdY+0HNzARLPf+8BihTPGESAIko8yc47G1voTNG9cTaCVHORG5qcFE2f/UA61Mk+ChSRIjsA1invX7dGorjS6lEKpsLHuG+LT3qtSCynISa193ZjKxlZmrwLZvbdZm6PgC7Vr7y6aI+f4zeY5Pti6VFUzerzMbQMArq4H9d3dneazJtik+bwZNiCsB7O4SNadRzh6mc0yGiRsFTRmEjZCYNcdTURitOYmQoqJMsJHZMR69g0JXayrp4dgoEnFhnAMBP2SxXM0L87NEmknCR9W5kQFcnLXAn+j+sUatjsap7mhWIpnQsNixhUBuVwYALRlU8sQmhgluvQCNit6Xs7VXsEq6MfDU5btTDoB6+21nfe7lYx6rzyHns+E7ovHD2nEPnyGk51P3ofnW/uz+8T94376f3a17quYueh84/seL9BqcoDkE=</latexit> <latexit sha1_base64="i+uRv7Uf7IaSVDs7hacaL/qc+Q=">ADSHicbVJLbxMxEN7d8ijhlcKRy4iKaqO2YTcqkEocilqhHhAqEmkqxYnlOE7Wyr5qe0sTyz+PC0du/AYuHECIG948CrSMtNLs9834+2Y0/TzmUgXBF9dbuXb9xs3VW5Xbd+7eu19de3As0JQ1qJZnImTPpEs5ilrKa5idpILRpJ+zNr98X7Jt8+YkDxL36tJzroJGaV8yClRFsJrbg8NBaF6AO2eRkBKC0M1gd+WDs1YCw+xZEBJHkCGzCvRSTOI4Kl0Q2UcwP7+PWCKf/hD/0WU7Ngws1pr2F0uD01AIdY+0HNzARLPf+8BihTPGESAIko8yc47G1voTNG9cTaCVHORG5qcFE2f/UA61Mk+ChSRIjsA1invX7dGorjS6lEKpsLHuG+LT3qtSCynISa193ZjKxlZmrwLZvbdZm6PgC7Vr7y6aI+f4zeY5Pti6VFUzerzMbQMArq4H9d3dneazJtik+bwZNiCsB7O4SNadRzh6mc0yGiRsFTRmEjZCYNcdTURitOYmQoqJMsJHZMR69g0JXayrp4dgoEnFhnAMBP2SxXM0L87NEmknCR9W5kQFcnLXAn+j+sUatjsap7mhWIpnQsNixhUBuVwYALRlU8sQmhgluvQCNit6Xs7VXsEq6MfDU5btTDoB6+21nfe7lYx6rzyHns+E7ovHD2nEPnyGk51P3ofnW/uz+8T94376f3a17quYueh84/seL9BqcoDkE=</latexit> <latexit sha1_base64="i+uRv7Uf7IaSVDs7hacaL/qc+Q=">ADSHicbVJLbxMxEN7d8ijhlcKRy4iKaqO2YTcqkEocilqhHhAqEmkqxYnlOE7Wyr5qe0sTyz+PC0du/AYuHECIG948CrSMtNLs9834+2Y0/TzmUgXBF9dbuXb9xs3VW5Xbd+7eu19de3As0JQ1qJZnImTPpEs5ilrKa5idpILRpJ+zNr98X7Jt8+YkDxL36tJzroJGaV8yClRFsJrbg8NBaF6AO2eRkBKC0M1gd+WDs1YCw+xZEBJHkCGzCvRSTOI4Kl0Q2UcwP7+PWCKf/hD/0WU7Ngws1pr2F0uD01AIdY+0HNzARLPf+8BihTPGESAIko8yc47G1voTNG9cTaCVHORG5qcFE2f/UA61Mk+ChSRIjsA1invX7dGorjS6lEKpsLHuG+LT3qtSCynISa193ZjKxlZmrwLZvbdZm6PgC7Vr7y6aI+f4zeY5Pti6VFUzerzMbQMArq4H9d3dneazJtik+bwZNiCsB7O4SNadRzh6mc0yGiRsFTRmEjZCYNcdTURitOYmQoqJMsJHZMR69g0JXayrp4dgoEnFhnAMBP2SxXM0L87NEmknCR9W5kQFcnLXAn+j+sUatjsap7mhWIpnQsNixhUBuVwYALRlU8sQmhgluvQCNit6Xs7VXsEq6MfDU5btTDoB6+21nfe7lYx6rzyHns+E7ovHD2nEPnyGk51P3ofnW/uz+8T94376f3a17quYueh84/seL9BqcoDkE=</latexit> <latexit sha1_base64="i+uRv7Uf7IaSVDs7hacaL/qc+Q=">ADSHicbVJLbxMxEN7d8ijhlcKRy4iKaqO2YTcqkEocilqhHhAqEmkqxYnlOE7Wyr5qe0sTyz+PC0du/AYuHECIG948CrSMtNLs9834+2Y0/TzmUgXBF9dbuXb9xs3VW5Xbd+7eu19de3As0JQ1qJZnImTPpEs5ilrKa5idpILRpJ+zNr98X7Jt8+YkDxL36tJzroJGaV8yClRFsJrbg8NBaF6AO2eRkBKC0M1gd+WDs1YCw+xZEBJHkCGzCvRSTOI4Kl0Q2UcwP7+PWCKf/hD/0WU7Ngws1pr2F0uD01AIdY+0HNzARLPf+8BihTPGESAIko8yc47G1voTNG9cTaCVHORG5qcFE2f/UA61Mk+ChSRIjsA1invX7dGorjS6lEKpsLHuG+LT3qtSCynISa193ZjKxlZmrwLZvbdZm6PgC7Vr7y6aI+f4zeY5Pti6VFUzerzMbQMArq4H9d3dneazJtik+bwZNiCsB7O4SNadRzh6mc0yGiRsFTRmEjZCYNcdTURitOYmQoqJMsJHZMR69g0JXayrp4dgoEnFhnAMBP2SxXM0L87NEmknCR9W5kQFcnLXAn+j+sUatjsap7mhWIpnQsNixhUBuVwYALRlU8sQmhgluvQCNit6Xs7VXsEq6MfDU5btTDoB6+21nfe7lYx6rzyHns+E7ovHD2nEPnyGk51P3ofnW/uz+8T94376f3a17quYueh84/seL9BqcoDkE=</latexit> Factorization of Medium Induced Radiation Generalized High Twist approach YY Z, GY Qin, XN Wang relax without collinear expansion k ⊥ ⌧ l ⊥ (to be published) factorize quark PDF and gluon PDF directly splitting function nucleon density dW µ ν 1 + z 2 2 ⇡↵ s y 1 ⊥ ) ⊗ D q → h ( z h /z ) ∼ ↵ s D (1) q 1 − z H µ ν (0) ( x ) ⊗ ⇢ ( y − 2 ⇡ C F 1 , ~ dz h N c z � ( x L + x D , ~ TMD gluon pdf ⇡ k ⊥ ) ⊗ f A q ( x ) k 2 [ ~ l ⊥ − (1 − z ) ~ k ⊥ ] 2 ⊥ quark pdf One example diagram l q q l h S l q x 3 p + k ⊥ x 2 p + k ⊥ xp x 1 p y y 1 y 2 0 X ATHIC 2018 Generalized HT approach 7/20
Recommend
More recommend