Example of transitive PCCFL s a b S S SA S SB ε c c a b A ’ B’ A B A ’ ε B’ ε Equivalence classes of D - threads = { S, A, B } , { A ’ } , { B’ } a b a s c S SA ABA A ’BA SBA SABA c ~ BAA’ A ’BA B’AA ’
Example of transitive PCCFL s a b S S SA S SB ε c c a b A ’ B’ A B A ’ ε B’ ε Equivalence classes of D - threads = { S, A, B } , { A ’ } , { B’ } a b a s c S SA ABA A ’BA SBA SABA c b ~ BAA’ A ’BA B’AA ’ AA ’
Example of transitive PCCFL s a b S S SA S SB ε c c a b A ’ B’ A B A ’ ε B’ ε Equivalence classes of D - threads = { S, A, B } , { A ’ } , { B’ } a b a s c S SA ABA A ’BA SBA SABA c b c ~ BAA’ A ’BA B’AA ’ A ’A ’ AA ’
Example of transitive PCCFL s a b S S SA S SB ε c c a b A ’ B’ A B A ’ ε B’ ε Equivalence classes of D - threads = { S, A, B } , { A ’ } , { B’ } a b a s c S SA ABA A ’BA SBA SABA c b c ’ a ~ BAA’ A ’BA B’AA ’ A ’A AA ’ A ’
Example of transitive PCCFL s a b S S SA S SB ε c c a b A ’ B’ A B A ’ ε B’ ε Equivalence classes of D - threads = { S, A, B } , { A ’ } , { B’ } a b a s c S SA ABA A ’BA SBA SABA c b c ’ a a ~ BAA’ A ’BA B’AA ’ A ’A AA ’ ε A ’
Example of transitive PCCFL s a b S S SA S SB ε c c a b A ’ B’ A B A ’ ε B’ ε Equivalence classes of D - threads = { S, A, B } , { A ’ } , { B’ } a b a s c S SA ABA A ’BA SBA SABA c b c ’ a a ~ BAA’ A ’BA B’AA ’ A ’A AA ’ ε A ’ L = L ( S ) without letters c
Example of transitive PCCFL s a b S S SA S SB ε c c a b A ’ B’ A B A ’ ε B’ ε Equivalence classes of D - threads = { S, A, B } , { A ’ } , { B’ } a b a s c S SA ABA A ’BA SBA SABA c b c ’ a a ~ BAA’ A ’BA B’AA ’ A ’A AA ’ ε A ’ L = L ( S ) without letters c L = { wsv: w,v ∊ { a,b } *, #w ( a ) =#v ( a ) , #w ( b ) =#v ( b )}
Our results tPCCFL PA PCCFL
Our results • pumping lemma for transitive PCCFL tPCCFL PA PCCFL
Our results • pumping lemma for transitive PCCFL • transitive PCCFL is a strict subclass of PCCFL L 1 tPCCFL PA PCCFL
Our results • pumping lemma for transitive PCCFL • transitive PCCFL is a strict subclass of PCCFL • transitive PCCFL and PA languages are incomparable L 3 L 2 L 1 tPCCFL PA PCCFL
Pumping lemma for transitive PCCFL
Pumping lemma for transitive PCCFL For any transitive PCCFL language L there is some n ≥ 0 such that any w in L of length at least n may be split into words w =xy z , so that there exists words t and u such that tu ≠ ε and for each m ≥ 0, x t m yu m z ∊ L
Pumping lemma for transitive PCCFL For any transitive PCCFL language L there is some n ≥ 0 such that any w in L of length at least n may be split into words w =xy z , so that there exists words t and u such that tu ≠ ε and for each m ≥ 0, x t m yu m z ∊ L Properties
Pumping lemma for transitive PCCFL For any transitive PCCFL language L there is some n ≥ 0 such that any w in L of length at least n may be split into words w =xy z , so that there exists words t and u such that tu ≠ ε and for each m ≥ 0, x t m yu m z ∊ L Properties • there are two places for new words
Pumping lemma for transitive PCCFL For any transitive PCCFL language L there is some n ≥ 0 such that any w in L of length at least n may be split into words w =xy z , so that there exists words t and u such that tu ≠ ε and for each m ≥ 0, x t m yu m z ∊ L Properties • there are two places for new words • t and u are arbitrary words
Pumping lemma for transitive PCCFL For any transitive PCCFL language L there is some n ≥ 0 such that any w in L of length at least n may be split into words w =xy z , so that there exists words t and u such that tu ≠ ε and for each m ≥ 0, x t m yu m z ∊ L Properties • there are two places for new words • t and u are arbitrary words • the same lemma holds for PA languages
Pumping lemmas transitiv e Partia � y - Commutativ e Context - Free Languages and PA Languages Commutativ e Context - Fre e Context - Fre e Languages Languages Regular Languages
Pumping lemmas transitiv e arbitrary words Partia � y - Commutativ e Context - Free Languages and PA Languages Commutativ e Context - Fre e Context - Fre e Languages Languages Regular words from word w Languages
Pumping lemmas transitiv e arbitrary words two places Partia � y - Commutativ e Context - Free Languages and PA Languages Commutativ e Context - Fre e Context - Fre e Languages Languages Regular one place words from word w Languages
Example languages tPCCFL PA PCCFL
Example languages L 1 tPCCFL PA PCCFL
Example languages L 2 L 1 tPCCFL PA PCCFL
Example languages L 3 L 2 L 1 tPCCFL PA PCCFL
L 1 ( tPCCFL ⊊ PCCFL ) L 1 tPCCFL PA PCCFL
Recommend
More recommend