paracontrolled kpz equation
play

Paracontrolled KPZ equation Nicolas Perkowski HumboldtUniversit at - PowerPoint PPT Presentation

Paracontrolled KPZ equation Nicolas Perkowski HumboldtUniversit at zu Berlin November 6th, 2015 Eighth Workshop on RDS Bielefeld Joint work with Massimiliano Gubinelli Nicolas Perkowski Paracontrolled KPZ equation 1 / 23 Motivation:


  1. Paracontrolled KPZ equation Nicolas Perkowski Humboldt–Universit¨ at zu Berlin November 6th, 2015 Eighth Workshop on RDS Bielefeld Joint work with Massimiliano Gubinelli Nicolas Perkowski Paracontrolled KPZ equation 1 / 23

  2. Motivation: modelling of interface growth Figure: Takeuchi, Sano, Sasamoto, Spohn (2011, Sci. Rep.) Nicolas Perkowski Paracontrolled KPZ equation 2 / 23

  3. KPZ equation KPZ equation is a model for random interface growth: h : R + × R → R , + λ | ∂ x h ( t , x ) | 2 ∂ t h ( t , x ) = κ ∆ h ( t , x ) + ξ ( t , x ) � �� � � �� � � �� � diffusion slope-dependence space-time white noise Nicolas Perkowski Paracontrolled KPZ equation 3 / 23

  4. KPZ equation KPZ equation is a model for random interface growth: h : R + × R → R , + λ | ∂ x h ( t , x ) | 2 ∂ t h ( t , x ) = κ ∆ h ( t , x ) + ξ ( t , x ) � �� � � �� � � �� � diffusion slope-dependence space-time white noise Kardar-Parisi-Zhang (1986): slope-dependent growth F ( ∂ x h ); h ) + 1 h ) 2 + . . . F ( ∂ x h ) = F (¯ h ) + F ′ (¯ h )( ∂ x h − ¯ 2 F ′′ (¯ h )( ∂ x h − ¯ Nicolas Perkowski Paracontrolled KPZ equation 3 / 23

  5. KPZ equation KPZ equation is a model for random interface growth: h : R + × R → R , + λ | ∂ x h ( t , x ) | 2 ∂ t h ( t , x ) = κ ∆ h ( t , x ) + ξ ( t , x ) � �� � � �� � � �� � diffusion slope-dependence space-time white noise Kardar-Parisi-Zhang (1986): slope-dependent growth F ( ∂ x h ); h ) + 1 h ) 2 + . . . F ( ∂ x h ) = F (¯ h ) + F ′ (¯ h )( ∂ x h − ¯ 2 F ′′ (¯ h )( ∂ x h − ¯ Highly non-rigorous since ∂ x h is a distribution. But: Hairer-Quastel (2015, unpublished) justify it via scaling. Nicolas Perkowski Paracontrolled KPZ equation 3 / 23

  6. KPZ equation KPZ equation is a model for random interface growth: h : R + × R → R , + λ | ∂ x h ( t , x ) | 2 ∂ t h ( t , x ) = κ ∆ h ( t , x ) + ξ ( t , x ) � �� � � �� � � �� � diffusion slope-dependence space-time white noise Kardar-Parisi-Zhang (1986): slope-dependent growth F ( ∂ x h ); h ) + 1 h ) 2 + . . . F ( ∂ x h ) = F (¯ h ) + F ′ (¯ h )( ∂ x h − ¯ 2 F ′′ (¯ h )( ∂ x h − ¯ Highly non-rigorous since ∂ x h is a distribution. But: Hairer-Quastel (2015, unpublished) justify it via scaling. Fluctuations of ε 1 / 3 h ( t ε − 1 , x ε − 2 / 3 ) should converge to KPZ fixed point. Only known for one-point distribution, special h 0 (Amir et al. (2011), Sasamoto-Spohn (2010), Borodin et al. (2014)). Nicolas Perkowski Paracontrolled KPZ equation 3 / 23

  7. Weak KPZ universality conjecture ∂ t h = ∆ h + | ∂ x h | 2 + ξ. KPZ equation for t → ∞ in KPZ universality class. For t → 0 Gaussian (Edwards-Wilkinson class of symmetric “growth” models). Nicolas Perkowski Paracontrolled KPZ equation 4 / 23

  8. Weak KPZ universality conjecture ∂ t h = ∆ h + | ∂ x h | 2 + ξ. KPZ equation for t → ∞ in KPZ universality class. For t → 0 Gaussian (Edwards-Wilkinson class of symmetric “growth” models). Weak KPZ universality conjecture: KPZ equation is only growth model interpolating EW and KPZ. Mathematically: fluctuations of weakly asymmetrical models converge to KPZ. Example: Ginzburg-Landau ∇ ϕ model d x j = � � r j = x j − x j − 1 ; pV ′ ( r j +1 ) − qV ′ ( r j ) d t + d w j ; For p = q convergence to ∂ t ψ = α ∆ ψ + βξ . For p − q = √ ε convergence to KPZ Diehl-Gubinelli-P. (2015, in preparation). Nicolas Perkowski Paracontrolled KPZ equation 4 / 23

  9. How to interpret KPZ? L h ( t , x ) = ( ∂ t − ∆) h ( t , x ) = | ∂ x h ( t , x ) | 2 + ξ ( t , x ) . Difficulty: h ( t , · ) has Brownian regularity, so | ∂ x h ( t , x ) | 2 =? Nicolas Perkowski Paracontrolled KPZ equation 5 / 23

  10. How to interpret KPZ? L h ( t , x ) = ( ∂ t − ∆) h ( t , x ) = | ∂ x h ( t , x ) | 2 + ξ ( t , x ) . Difficulty: h ( t , · ) has Brownian regularity, so | ∂ x h ( t , x ) | 2 =? Cole-Hopf transformation: Bertini-Giacomin (1997) set h ( t , x ) := log w ( t , x ), where L w ( t , x ) = w ( t , x ) ξ ( t , x ) (linear Itˆ o SPDE). Correct object but no equation for h . Nicolas Perkowski Paracontrolled KPZ equation 5 / 23

  11. How to interpret KPZ? L h ( t , x ) = ( ∂ t − ∆) h ( t , x ) = | ∂ x h ( t , x ) | 2 + ξ ( t , x ) . Difficulty: h ( t , · ) has Brownian regularity, so | ∂ x h ( t , x ) | 2 =? Cole-Hopf transformation: Bertini-Giacomin (1997) set h ( t , x ) := log w ( t , x ), where L w ( t , x ) = w ( t , x ) ξ ( t , x ) (linear Itˆ o SPDE). Correct object but no equation for h . Hairer (2013): series expansion and rough paths/regularity structures, defines | ∂ x h ( t , x ) | 2 . So far on circle ( h : R + × T → R ), but certainly soon extended to h : R + × R → R . Nicolas Perkowski Paracontrolled KPZ equation 5 / 23

  12. How to interpret KPZ? L h ( t , x ) = ( ∂ t − ∆) h ( t , x ) = | ∂ x h ( t , x ) | 2 + ξ ( t , x ) . Difficulty: h ( t , · ) has Brownian regularity, so | ∂ x h ( t , x ) | 2 =? Cole-Hopf transformation: Bertini-Giacomin (1997) set h ( t , x ) := log w ( t , x ), where L w ( t , x ) = w ( t , x ) ξ ( t , x ) (linear Itˆ o SPDE). Correct object but no equation for h . Hairer (2013): series expansion and rough paths/regularity structures, defines | ∂ x h ( t , x ) | 2 . So far on circle ( h : R + × T → R ), but certainly soon extended to h : R + × R → R . Martingale problem: Assing (2002), Gon¸ calves-Jara (2014), Gubinelli-Jara (2013) define “energy solutions” of equilibrium KPZ. Uniqueness long open, solved in Gubinelli-P. (2015). Nicolas Perkowski Paracontrolled KPZ equation 5 / 23

  13. Solution concepts and weak KPZ universality Cole-Hopf: equation for e h ; most systems behave badly under exponential transformation. Only very specific models: Bertini-Giacomin (1997), Dembo-Tsai (2013), Corwin-Tsai (2015) . Nicolas Perkowski Paracontrolled KPZ equation 6 / 23

  14. Solution concepts and weak KPZ universality Cole-Hopf: equation for e h ; most systems behave badly under exponential transformation. Only very specific models: Bertini-Giacomin (1997), Dembo-Tsai (2013), Corwin-Tsai (2015) . Pathwise approach: needs precise control of regularity, so far only semilinear S(P)DEs: Hairer-Quastel (2015), Hairer-Shen (2015), Gubinelli-P. (2015). Nicolas Perkowski Paracontrolled KPZ equation 6 / 23

  15. Solution concepts and weak KPZ universality Cole-Hopf: equation for e h ; most systems behave badly under exponential transformation. Only very specific models: Bertini-Giacomin (1997), Dembo-Tsai (2013), Corwin-Tsai (2015) . Pathwise approach: needs precise control of regularity, so far only semilinear S(P)DEs: Hairer-Quastel (2015), Hairer-Shen (2015), Gubinelli-P. (2015). Martingale problem: powerful for universality of equilibrium fluctuations Gon¸ calves-Jara (2014), Gon¸ calves-Jara-Sethuraman (2015), Diehl-Gubinelli-P. (2015, in preparation). Before only tightness and martingale characterization of limits. Now: uniqueness proves convergence. Nicolas Perkowski Paracontrolled KPZ equation 6 / 23

  16. Aims for the rest of the talk Equivalent derivation of Hairer’s solution, replacing rough paths by paracontrolled distributions. Nicolas Perkowski Paracontrolled KPZ equation 7 / 23

  17. Aims for the rest of the talk Equivalent derivation of Hairer’s solution, replacing rough paths by paracontrolled distributions. New stochastic optimal control formulation of the KPZ equation. Nicolas Perkowski Paracontrolled KPZ equation 7 / 23

  18. Aims for the rest of the talk Equivalent derivation of Hairer’s solution, replacing rough paths by paracontrolled distributions. New stochastic optimal control formulation of the KPZ equation. Uniqueness of equilibrium KPZ martingale problem. Nicolas Perkowski Paracontrolled KPZ equation 7 / 23

  19. Paracontrolled formulation of the equation 1 KPZ as HJB equation 2 Uniqueness of the martingale solution 3 Nicolas Perkowski Paracontrolled KPZ equation 8 / 23

  20. Formal expansion of the KPZ equation L h ( t , x ) = ( ∂ t − ∆) h ( t , x ) = | ∂ x h ( t , x ) | 2 − ∞ + ξ ( t , x ) , Perturbative expansion around linear solution: h = Y + h ≥ 1 with Y ∈ C 1 / 2 − , L Y = ξ, thus L h ≥ 1 = | ∂ x Y | 2 − ∞ + 2 ∂ x Y ∂ x h ≥ 1 + | ∂ x h ≥ 1 | 2 . � �� � � �� � � �� � C − 1 / 2 − C − 1 − = B − 1 − C 0 − ∞ , ∞ Nicolas Perkowski Paracontrolled KPZ equation 9 / 23

  21. Formal expansion of the KPZ equation L h ( t , x ) = ( ∂ t − ∆) h ( t , x ) = | ∂ x h ( t , x ) | 2 − ∞ + ξ ( t , x ) , Perturbative expansion around linear solution: h = Y + h ≥ 1 with Y ∈ C 1 / 2 − , L Y = ξ, thus L h ≥ 1 = | ∂ x Y | 2 − ∞ + 2 ∂ x Y ∂ x h ≥ 1 + | ∂ x h ≥ 1 | 2 . � �� � � �� � � �� � C − 1 / 2 − C − 1 − = B − 1 − C 0 − ∞ , ∞ = | ∂ x Y | 2 − ∞ and then Continue expansion: set L Y = ∂ x Y ∂ x Y and in general L Y ( τ 1 τ 2 ) = ∂ x Y τ 1 ∂ x Y τ 2 . Formally: L Y � c ( τ ) Y τ . h = τ Seems very difficult to make this rigorous. Nicolas Perkowski Paracontrolled KPZ equation 9 / 23

Recommend


More recommend