oxygenation and tumour biology
play

Oxygenation and (Tumour) Biology Cell Models & 3D culture - PDF document

11/15/2017 Biological Roles of O2 and principles of quenched-phosphorescence O 2 sensing Demonstration in in vivo studies Demonstration in ex-vivo models 3D tissue models and physiological studies in Dmitri B. Papkovsky vitro


  1. 11/15/2017  Biological Roles of O2 and principles of quenched-phosphorescence O 2 sensing  Demonstration in in vivo studies  Demonstration in ex-vivo models  3D tissue models and physiological studies in Dmitri B. Papkovsky vitro School of Biochemistry and Cell Biology, University College Cork, Ireland Oxygenation and Physiological Relevance Oxygenation and (Tumour) Biology Cell Models & 3D culture Tumour Metabolism Therapeutic Efficacy 1.E-07 8.E-08 Cell Culture Glycolytic Flux ([H+] /h) ~18.6% 6.E-08 O 2 % Anoxia ‘ Normoxia ’ ‘Hypoxia’ Oxygen 0 5 10 15 20 4.E-08 Inspired air 2.E-08 ~1% O 2 ~7% O 2 ~21% O 2 Kidney Liver 0.E+00 Muscle iO2 2 = 17% 7% iO2 2 = 0.5% ‘Hypoxia’ ‘ Normoxia ’ Hyper oxic McKeown SR. Defining normoxia, physoxia and hypoxia ‘ Physoxia’ in tumours — implicationsfor treatmentresponse. Br J Radiol 2014;87:20130676 Q) Is culturing cells at 18.6% O 2 physiologically relevant ? A) No. It is Hyperoxic w.r.t. to most tissues. • Therapeutic Efficacy ROS / Metabolism / Signalling? • Delineating hypoxia signalling (HIF stabilisation) • Ischemia Reperfusion Modelling 1

  2. 11/15/2017 In situ [O [O 2 ] determines s cell physi siology !! Zhdanov et al - Integr. Biol. 2010, 2:443 S* S* Analyt ytical Appr proach Features T* T* In vivo imaging with intravascular Systemic administration in live O 2 probes animals (IV): High doses, rapid clearance • phosphorescence h n (~3h), once-off fluorescence O 2 • Poorly suitable for in vitro use Bulk tissue is dark • Complex synthesis, costs • ns m s Intracellular O 2 probes & micro- Local administration in tissue: low doses, controlled location imaging • long retention time (many days) • Low toxicity Relationship : [O [O 2 ] = (t • (t o /t -1)/ K q Non-chemical , reversible • Micro & macro imaging, • Miscellaneous: O 2 probes Various technologies, often 2D or Quantitative, real-time, stable • Imaging systems, point measurements, semi- quantitative Optical, minimally invasive • 2

  3. 11/15/2017 l exc l em t o ( m s) Probe name, composition K SV Ru(bpy) 2 (pic) 2+ - CPP conjugate 458 nm 610 nm 775 ns ND PtCP - CPP conjugates 390 nm 650 nm 50-70 m s 0.006 mM -1 Ir-BTP coumarin C343 conjugate 620, 680 nm 405 nm 5.6 m s 0.064 mmHg -1 Small molecules 480 nm (ref) • IrOEP – CPP complexes 386 654 58-69 m s 0.074 mM -1 PtTFPP Pt-Glc conjugate 395 650 57 m s 0.03 mM -1 Bioconjugates, e.g. peptides • PdTCBP-HiLyte680 dendrimer in PAAG NPs modified 442, 632 nm 790 nm (O 2 ) Not reported 0.034 mM -1 with TAT peptide (30-50 nm) 678 nm (ref) 699 nm (ref) (250 m s for G2) [Ru(dpp(SO 3 Na) 2 ) 3 ]Cl 2 in PAA NPs (45 nm) 454 nm 608 nm 3.88-4.06 m s ND PtTFPP in RL100 polymer (35 nm NPs) 395 nm 650 nm 69.1 m s 0.04 mM -1 PtTFPP-naphtalimide dye in PS NPs (410-430 nm) 395 nm 650 nm ND ND Polymeric NPs (by inclusion) • 490 nm (ref) PtTFPP and PFO in RL100 NPs (70 nm) 405 nm - 1P 650 nm 66 m s 0.041 mM -1 760 nm – 2P 430 nm (ref) Polymeric NPs (by conjugation) • [Ru(dpp) 3 ](TMSPS) 2 in amino modified PS NPs (121 488 – 1P 630 nm ND ~0.8? nm) 830 nm – 2P PtTBP in RL100 NPs 440, 614 nm 760 nm 57 m s ~0.02 mM -1 PtTFPP in PS NPs (50 nm) 395 650 61 m s ND PtTFPP and PFO in acrylic polymer NPs (95 nm). 405 – 1P 650 nm 68 m s 0.086 mM -1 Multi-functional NP composites • 760 – 2P 430 nm (ref) 630 nm WPF-Ir4 and WPF-Ir8 NPs (19 nm). 405 nm 0.6 m s 0.006 mmHg ? 450 nm (ref) [Ru(dpp) 3 ] 2+ Cl 2 and NaYF 4 :Yb/Tm@NaYF 4 in 980 nm – UC 613 nm ns ND mesoporous silica NP (50 nm) 477 nm (ref) PtTFPP in PS-silane hybrid NPs (77 nm) 395 605 nm M s ND NanO2 MM2 MM2 600 400 500 Intensity, a.u. 400 300 300 200 200 100 100 0 0 Prof. f. Sergey Borisov sov, , Graz, , Austria 300 350 400 450 500 550 600 650 700 300 350 400 450 500 550 600 650 700 Wavelength, nm Wavelength, nm Biocompatible polymer • Average size 35-50 nm • Z potential +45mV • Stable, bright, low toxicity • Detection Modes: Dmitriev ev RI et al . – Adv . . Funct . Mater er 2012 Fercher er A. et al – ACS Nano, o, 2011 3

  4. 11/15/2017 Conjugated Polymer NPs 6 1.2x10 pO 2 , kPa (a) Luminescence Intensity, a.u. 6 1.0x10 0 5 0.98 8.0x10 Hydrophilic, water-soluble, neutral • 1.96 6.0x10 5 3.92 5 4.0x10 7.82 11.74 5 2.0x10 Efficient cell and tissue penetration • 19.56 0.0 400 500 600 700 Wavelength, nm Stable calibration • pO 2 , kPa 4x10 5 Luminescence (b) Intensity, a.u. 0 5 3x10 0.98 High photostability, low toxicity • 1.96 5 2x10 3.92 7.82 5 1x10 11.74 Moderate brightness • 19.56 0 500 600 700 800 Wavelength, nm Advantages: (c) SII-0.1 + 4 + /0.05 - Enhanced brightness - up to 10-fold, 1P, 2P SI-0.15 • 3 Tunable spectra, surface charge, cell R 0 /R • Pt-Glc structure specificity 2 Improved stability, tissue staining and • 1 penetration 0 5 10 15 20 pO 2 , kPa Dmitriev ev RI et al . – Biom omater er. Sci., 2014 Dmitriev ev RI et al . – ACS Nano, o, 2015  Procedure: Anaesthesia, surgery ◦ Probe/Sensor application ◦ Mounting cranial window ◦ Commercial Intensity based imager ◦ ◦ Sacrificing animal 4

  5. 11/15/2017  VSD - Cell depolarisation ◦ fast, localised response - ~50 ms  O 2 Probe - tissue oxygenation, metabolism, hemodynamics ◦ Delayed, bi-phasic response ◦ Affects larger area ◦ Resembles BOLD-MRI, fNIRS signals Tsytsarev ev et al – J. Neuros osci Meth, 2013, Ex-Vivo Tissue: Experimental procedure  Distal colon Euthanasia supercontinuum ps laser  Urinary bladder Fianium, 400-650 nm, 4W Tissue excision Axio Examiner microscope (Zeiss)  Carotid artery & mounting DCS-120 Confocal FLIM (B&H) Pt-Glc Pins Pins 1-3 h at 37 o C Stimulations Pins Pins Pins Pins Pt-Glc 5

  6. 11/15/2017 Occluded Carotid Artery Oxygenation Control carotid artery 6 weeks after ligation iO 2 [ m M] 180 0 • Bright staining of the tunica intima layer • Dramatic effect of ligation on tissue oxygenation Zhdanov ov AV et al . – CMLS , 2016 KO WT WT KO G H I O 2 levels in the samples [ m M] 80 Control 105 70 DSS OCR [nM/min × mg protein] 1.4 S 1 60 1.3 Normalised OCR [%] 50 p = 0.116 1.2 100 40 1.1 30 1 iO 2 [ m M] S 2 0 135 95 20 0.9 Prominent diff fference ces in ROS S generation, , but 10 0.8 marginal diff fference ces s in tiss ssue O 2 levels ! 0 0.7 90 0 10 20 30 40 50 60 Control DSS O2 4 3.5 3 2.5 2 1.5 1 0.5 0 0 50 100 TOP MIDDLE BOTTOM 6

  7. 11/15/2017 Detailed Analysis - Group comparison Non-parametric Mann-Whitney U-test Chart Title 125 60 Line 1 Pt-Glc intensity 100 Line 2 40 75 20 iO 2 [microM] 0 50 Cell border 60 25 40 20 0 50 40 30 20 10 0 0 iO 2 0 100 200 300 Line 2 aver aver Distance [micrometres] m m +/ +/- SEM values for 25%, 50% and d 75% quartiles show the Line 1 diffe ference in actual O 2 levels 65 O 2 [ micro M] 5 Pircalabior oru G et al . – Cell Host Microb obe. 2016,19:651. Calculated HIF prolyl hydroxylase 2 activities iO 2 [ m M] v [% V max ] 5-10 2-3.8 10-15 3.8-5.7 Resting FCCP / EGTA AntA (80 min) 15-20 5.7-7.4 20-30 7.4-10.7 30-40 10.7-13.8 40-50 13.8-16.7 Putative O 2 [ m M] 85 5 PHD2 activity, v [% V max ] 12-15 m M O 2 10-13 m M O 2 4.6-5.7 % V max 3.8-4.9 % V max 100 O 2 [ m M] 0 40 m M O 2 13.8 % V max Relative LT frequency [ *10 5 ] 9 160 Resting n n 30 min i i 8 m m FCCP / EGTA 0 0 6 m M 8 5 Calculated local PHD2 activity : 7 9 m M AntA 120 Average iO 2 [ m M] 6 * * 160 iO 2 [ m M] Km (O 2 ) = 250 m M; 5 35 m M O 2 120 80 4 v = Vmax[S]/(Km+[S]) 3 12.3 % V max 80 40 2 40 1 O 2 [ m M] 0 100 5 0 0 0 20 40 60 80 25 30 35 40 45 50 0 25 50 75 LT [ m s] AntA treatment [min] Cell cross section [ m m] Zhdanov ov A et al, AJP-CP, 2015 Zhdanov ov AV – Am . J. Cell Physiol ol.. 2015 7

  8. 11/15/2017 Multicellular spheroids • Cell co-cultures • Organoids • Engineered tissue scaffolds • Vascularised tissue • Environmental control and standardization remain bottlenecks FLIM platforms can address these 8

  9. 11/15/2017 Neurospheres cultured • at 21% and 4% O 2 with NanO2 probe. Imaged at 21% O 2 . • Jenki kins J. et al . – Biochem em . J. 2016  Intestinal Organoid (SIO) Models: ◦ Establish cultures ◦ Characterise O 2 and respiration activity ◦ Standardize, reduce heterogeneity ◦ Conduct physiological studies 500 μ m O 2 gradient between basal (blue) and apical (violet) membranes (n=10): 9

  10. 11/15/2017 Biophysics Lab (University College Cork):  ◦ Dr. Alex Zhdanov, Dr. Ruslan Dmitriev ◦ Dr. Irina Okkelman  T – probe (NanO2 analog) – ◦ Dr. James Jenkins ◦ All former lab members Anal Chem, m, 2016, 88: 10566  Profs. Sergei Borisov (Graz University of Technology, Austria)  pH probe - J. Mater. Chem. m. B, 2014, 2: 6792  Dr. H. Dussmann (Royal College of Surgeons Ireland) Dr. V.P. Baklaushev (Pirogov Medical University, Russia)   Cell Cycle assay (Hoechst 2334 and dBrU) – Dr. M. Tangney, (CCRC, University College Cork)  PLOS One, 2016, 11: e0167385  K + -probe - Adv Funct Mater (in press)  Prof John Cryan, Dr Anna Golubeva  Dr Silvia Melgar, Dr Niall Hyland  More in development  Prof Ulla Knaus, Dr Gabriella Aviello Funding: Science Foundation Ireland, Enterprise Ireland Follow us at: http://photobiolabcork.blogspot.ie 10

Recommend


More recommend