overview of two photon and two boson exchange
play

Overview of two-photon and two-boson exchange Peter Blunden - PowerPoint PPT Presentation

Overview of two-photon and two-boson exchange Peter Blunden University of Manitoba Electroweak Box Workshop, September 28, 2017 in collaboration with Wally Melnitchouk and AJM Collaboration Outline Recent advances in TPE theory


  1. Overview of two-photon and two-boson exchange Peter Blunden † University of Manitoba Electroweak Box Workshop, September 28, 2017 † in collaboration with Wally Melnitchouk and AJM Collaboration

  2. Outline •Recent advances in TPE theory (2008-present) 
 Review: Afanasev, PGB, Hassell, Raue, Prog. Nucl. Part. Phys. (2017) –improved hadronic model parameters (fit to data) –use of dispersion relaVons and connecVon to data –new experimental results 
 • γ Z box contribuVons to PV electron scaXering –amenable to dispersion analysis in forward limit ( Q ²→ 0 ) –disVncVon between axial and vector hadron coupling –use of inelasVc PV data in resonance and DIS regions 2

  3. Hadronic Approach Low to moderate Q 2 : k ! k ! k k hadronic: N + Δ + N * etc. q 1 q q 1 q 2 k k 2 k p ! p ! k p p • as Q 2 increases more and 
 more parameters • Loop integraVon using sum of monopole PGB, Melnitchouk, & Tjon, PRL 91 , 142304 (2003) transiVon form factors fit to spacelike Q 2 Nucleon (elasVc) intermediate state Feshbach limit 0.01 0 (iterated Coulomb) 0.01 2 =1 GeV 2 Q 0.001 0.1 2 ) 2 ) − 0.02 − ( ε , Q − ( ε , Q 0 2 δ 0.5 δ − 0.01 − 0.04 3 2 =1 GeV 2 Q 6 − 0.02 − 0.06 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ε ε 3

  4. Δ and N* intermediate states e ′ ( p 3 ) e ( p 1 ) γ γ k P ′ ( p 4 ) P ( p 2 ) N, ∆ N, ∆ ( a ) ( b ) Direct loop integraVon method Kondratyuk et al., PRL 95 , 172503 (2005) Zhou & Yang, Eur. Phys. J. A. 51 , 105 (2015) Unphysical divergence •Include all 3 N → Δ mulVpoles, with form factors fit to CLAS data •Opposite sign to nucleon contribuVon •QualitaVvely correct, BUT diverges as ε → 1 , implying a violaVon of unitarity (Froissart bound) 4

  5. Dispersive method on shell k ₁ ! ! ! S = 1 + i M # ! # " S † = 1 − i M † " ! " SS † = 1 Unitarity → M � M † � = 2 ⇥ m M = M † M � � i Z � m ⇥ f |M| i ⇤ = 1 X ⇥ f |M ∗ | n ⇤⇥ n |M| i ⇤ d ρ 2 n •Imaginary part determined by unitarity •Uses only on-shell form factors •Use form factors directly fit to data, not reparametrized by sum of monopoles •Real part determined from dispersion relaVons 5

  6. TPE using dispersion relaVons Generalized form factors ◆ ( p ) ✓ 2 ( Q 2 , ν ) i σ µ ν q ν 1 ( Q 2 , ν ) γ µ + F 0 M γγ → ( γ µ ) ( e ) ⊗ F 0 2 M � ( p ) + ( γ µ γ 5 ) ( e ) ⊗ a ( Q 2 , ν ) γ µ γ 5 � G 0 δ γγ = 2Re ε G E ( F 0 1 − τ F 0 2 ) + τ G M ( F 0 1 + F 0 2 ) + ν (1 − ε ) G M G 0 a ε G 2 E + τ G 2 M Dispersion relaVons Z 1 1 ( Q 2 , ν ) = 2 ν 1 ( Q 2 , ν 0 ) , Re F 0 d ν 0 ν 0 2 − ν 2 Im F 0 π P � τ Z 1 2 ( Q 2 , ν ) = 2 ν 2 ( Q 2 , ν 0 ) , Re F 0 d ν 0 ν 0 2 − ν 2 Im F 0 π P � τ Z 1 a ( Q 2 , ν ) = 2 ν 0 a ( Q 2 , ν 0 ) . Re G 0 d ν 0 ν 0 2 − ν 2 Im G 0 π P � τ Integral extends into ``unphysical region’’ down to zero energy ( cos θ < -1 ) 6

  7. A few technical details on shell k ₁ ! ! ! 4 π Q 2 1 Im { L α µ ν H α µ ν } α Z d 4 q 1 # ! # " ( q 2 1 − λ 2 )( q 2 i π 2 2 − λ 2 ) " ! " � Q 2 1 , Q 2 � G 1 ( Q 2 1 ) G 2 ( Q 2 s − W 2 2 ) f Z 2 d Ω k 1 ( Q 2 1 + λ 2 ) ( Q 2 4 s 2 + λ 2 ) • L and H are leptonic and hadronic tensors • f is a polynomial in photon virtualiVes Q 12 and Q 22 • G i ( Q i 2 ) is a transiVon form factor with poles in the complex Q i 2 plane 0.6 θ = 30 ∘ Use numerical contour integraVon 0.5 Allows for use of arbitrary funcVonal 0.4 Q 22 ( GeV 2 ) forms for transiVon form factors G i ( Q i 2 ) θ = 90 ∘ 0.3 0.2 0.1 Contours are concentric ellipses of radial parameter r θ = 150 ∘ 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Q 12 ( GeV 2 ) 7

  8. Nucleon (elasVc) intermediate state Q 2 = 3 GeV 2 0 ′ �� � � 0.04 �� ( ��� ) � (× �� - � ) ′ �� � � - 2 �� ( ��� ) � 0.02 � � = � ��� � ′ �� � � - 4 0.00 - 6 ( � ) - 0.02 Unphysical Physical ( � ) - 8 10 - 3 10 - 2 0.1 1 10 0 2 4 6 8 10 � ( ��� ) � ( ��� ) Logarithmic divergence No subtracVons needed at low energies 0.01 0.00 ��� - 0.01 Agrees with old loop � - 0.02 integra3on method δ � - 0.03 � - 0.04 � � = � ��� � - 0.05 0.0 0.2 0.4 0.6 0.8 1.0 8 ε

  9. Δ intermediate state (zero width approximaVon) 8 � � = � ��� � ( � ) ( � ) 10 ′ �� � � �� ( ��� ) Δ (× �� - � ) �� ( ��� ) Δ (× �� - � ) 6 ′ �� � � 4 0 ′ �� � � 2 ′ �� � � - 10 0 ′ �� � � ′ - 2 �� � � - 20 Unphysical Physical - 4 0.5 1 5 10 0 2 4 6 8 10 12 14 � ( ��� ) � ( ��� ) •Include all 3 mulVpoles, with form factors fit to recent CLAS data • G M* x G M* dominates, but G M* x G E* interference is significant 0.015 � � = � ��� � No unphysical 0.010 divergence at ε → 1 � δ Δ 0.005 � 0.000 changes sign at Q 2 ≈ 0.6 GeV 2 ��� 0.0 0.2 0.4 0.6 0.8 1.0 9 ε

  10. Direct measurements of Im part Target normal spin asymmetry Ee = 0.570 GeV Proton Neutron % (taken from Pasquini & Vanderhaeghen) π N (inelastic) N (elastic) total This is all in the physical region. 10

  11. PolarizaVon data N 0.74 Q 2 = 2.50 GeV 2 N + Δ 0.72 R TL 0.70 R TL indicates mild sensiVvity 
 ● ● ● ● ● ● to G E form factor at low 𝜁 0.68 ● ● ● 0.66 ( b ) Venkat form factors 0.0 0.2 0.4 0.6 0.8 1.0 ε N 0.74 Q 2 = 2.50 GeV 2 N 1.04 N + Δ 0.72 N + Δ 1.02 ( 0 ) ● GEp2 γ R TL 0.70 ● ● ● ● P L / P L ● ● ● ● ● ● 1.00 ● ● ● 0.68 ● ● ● ( a ) 0.98 0.66 ( b ) Kelly form factors 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 ε ε 11

  12. TPE effect on raVo of e + p to e - p cross secVons TPE interference changes sign for positrons vs electrons R 2 γ = σ e + σ e − ≈ 1 − 2 δ γγ VEPP-3 (Novosibirsk) 1.04 1.04 � ���� - � ▼ ▼ 1.03 1.03 � + Δ 1.02 1.02 ▼ ▼ � � γ ▼ ▼ ▼ ▼ 1.01 1.01 1.00 1.00 ▼ ▼ ( � ) ( � ) � = ����� ��� � = ����� ��� 0.99 0.99 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 ε ε 12

  13. TPE effect on raVo of e + p to e - p cross secVons CLAS (Jefferson Lab) 1.06 1.06 < � � > = ���� ��� � < � � > = ���� ��� � � 1.04 1.04 � + Δ ���� ● ● ● 1.02 1.02 � � γ ● ● ● ● ● ● 1.00 1.00 ● ● ● ● ● ● ● ● ● ● 0.98 0.98 ( � ) ( � ) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 ε ε 1.06 1.06 < ε > = ���� � < ε > = ���� ( � ) 1.04 1.04 ���� � + Δ ● ● ● 1.02 1.02 � � γ ● ● ● ● 1.00 1.00 ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.98 0.98 ( � ) 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 � � ( ��� � ) � � ( ��� � ) 13

  14. TPE effect on raVo of e + p to e - p cross secVons OLYMPUS (Doris ring @ DESY) N OLYMPUS 1.04 ■ ■ N + Δ 1.02 ■ ■ R 2 γ ■ ■ ■ ■ ■ ■ What is going on 1.00 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ at low Q ² ? 0.98 E = 2.01 GeV 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ε 14

  15. Comparing theory and experiment VEPP3 CLAS OLYMPUS About 1% below theory over all ε 15

  16. Allowing normalizaVon to float VEPP3 CLAS OLYMPUS 16

  17. CorrecVon to proton weak charge e.w. vertex including one-loop radiaVve correcVons correcVons s 2 + ∆ 0 Q p � � W = ρ 1 − 4 κ PT (0)ˆ e + ∆ W box diagrams + ⇤ W W + ⇤ ZZ + ⇤ γ Z X Box corrections WW and ZZ box diagrams large but dominated by short distances; can be evaluated perturbaVvely γ Z box diagram sensiVve to long distance physics, has two contribuVons: O γ Z = O A γ Z + O V γ Z A( e ) x V( h ) V( e ) x A( h ) (finite at E =0 ) (inelastic vanishes at E =0 ) 17

  18. Axial h correcVon axial h correcVon dominant γ Z correcVon in ⇤ A γ Z atomic parity violaVon at very low (zero) energy computed by Marciano & Sirlin in 1983 as sum of two parts: low-energy part approximated by Born contribuVon (elasVc intermediate state) high-energy part (above scale Λ ~ 1 GeV ) computed perturbaVvely in terms of q q scaXering from free quarks q q q q ✓ ◆ Z ∞ s 2 � 5 α dQ 2 1 − α s ( Q 2 ) � ⇤ A γ Z = 1 − 4ˆ Q 2 (1 + Q 2 /M 2 2 π Z ) π Λ 2 | {z } M 2 z Λ 2 + c ∼ log Marciano, Sirlin, PRD 29 (1984) 75; Erler et al., PRD 68 (2003) 016006 18

  19. Forward angle dispersion method Gorchtein, Horowitz, PRL 102 (2009) 091806 on-shell states S = 1 + i M k’ k k ≈ S † = 1 − i M † q γ ∗ Z SS † = 1 p’ p p ≈ Unitarity → M � M † � = 2 ⇥ m M = M † M � � i Z � m ⇥ f |M| i ⇤ = 1 X ⇥ f |M ∗ | n ⇤⇥ n |M| i ⇤ d ρ 2 n Forward scattering amplitude: | f 〉 ≈ | i 〉 L µ ν W µ ν ⇤ m ⌅ i |M| i ⇧ = 1 Z Z | ⌅ n |M| i ⇧ | 2 ⇥ X d 3 k 1 d ρ q 2 ( q 2 � M 2 2 Z ) n vector h axial h + p µ p ν − i ε µ νλρ p λ q ρ hadronic tensor: MW µ ν γ Z = − g µ ν F γ Z p · q F γ Z 2 p · q F γ Z 1 2 3 19

Recommend


More recommend