organic compounds in water and wastewater
play

Organic Compounds in Water and Wastewater Origins of NOM II - PDF document

9/18/2014 Print version CEE 697z Organic Compounds in Water and Wastewater Origins of NOM II Lecture #5 Dave Reckhow - Organics In W & WW Carbohydrates empirical formula: C x (H 2 O) y CH 2 OH CH 2 OH CH 2 OH H OH H H O O O H


  1. 9/18/2014 Print version CEE 697z Organic Compounds in Water and Wastewater Origins of NOM II Lecture #5 Dave Reckhow - Organics In W & WW Carbohydrates  empirical formula: C x (H 2 O) y CH 2 OH CH 2 OH CH 2 OH H OH H H O O O H H O OH H H OH H OH H OH OH OH OH H OH H OH H OH Glucose (monosaccharide) Cellulose (polysaccharide) CH 2 OH H OH O Glucosamine (amino sugar) H OH H OH H H NH 2 2 1

  2. 9/18/2014 Carbohydrates, cont.  Nomenclature  Monosaccharide: 1 simple sugar  1% of DOC  Oligosaccharide:  10 simple sugars  Polysaccharide: > 10 simple sugars  5% of DOC  Special interest in distribution systems  Food for microbial regrowth  Major constituents of:  soluble metabolic byproducts  biofilms Carbohydrates, cont.  Function in plants  Structural – cell walls  Cellulose (~10,000 ᴅ -glucose units)  Most abundant natural organic compound  Mostly in higher plants; some algae have none  Hemicelluloses (50-2000 monosaccharides of many types)  Forms a matrix around cellulose fibers in cell walls  Chitin (N-acetyl- ᴅ -glucosamine units)  Second most abundant natural organic (~tied with lignin)  Role of cellulose in most fungi, some algae & arthropods  Murein or “peptidoglycan”, a major group of Acylheteropolysaccharides  N-acetyl- ᴅ -glucosamine & N-acetylmuiramic acid cross linked by AA chains  Dominant in Eubacteria: up to 75% of bacterial dry mass  Energy – polysaccharides  Starch in plants (80% amylopectin, 20% amylose)  Anti-dessicants 4 2

  3. 9/18/2014 Carbohydrates, cont. Algae etc., Heteropolysaccharides Nitrogen-containing 5 Carbohydrates, cont. 6 3

  4. 9/18/2014 Acylheteropolysaccharides (APS)  10-35% of river and lake water DOC  Produced by algae in fresh and salt waters  Similar to structural polysaccharides?  Comprised of a nearly fixed ratio of simple sugars, acetate and lipids  Refractory like humic substances 7 Sugars in Natural Waters From: Perdue & Ritchie, 2004 8 4

  5. 9/18/2014 At neutral pH’s most lose H + Fatty Acids CH 3 -COO -  maybe 4% of DOC  other mixed acids may account for 2% H-COOH CH 3 -COOH CH 3 -CH 2 -COOH Formic Acid Acetic Acid Propionic Acid CH 3 -CH 2 -CH 2 -COOH H 3 -CH 2 -CH 2 -CH 2 -COOH Butyric Acid Valeric Acid Common Volatile Fatty Acids in Natural Waters 9 Amino Acids and Proteins NH 2 Alanine  Simple Amino Acids H 2 C C COOH  some may form THMs and HANs H  Proteins NH 2  much larger, comprised of HO C C COOH many AAs H 2 H Tyrosine  Special interests in DWT – nutrients for bacterial regrowth 10 – role in chlorine decay and DBP formation 5

  6. 9/18/2014 Amino Acids From: Perdue & Ritchie, 2004 11 Terpenes and Terpenoids  The terpenoids , sometimes called isoprenoids , are a large and diverse class of naturally occurring organics similar to terpenes, derived from five- carbon isoprene units assembled and modified in thousands of ways. T erpenoids can be thought of as modified terpenes, wherein methyl groups have been  moved or removed, or oxygen atoms added.  Plant terpenoids are used extensively for their aromatic qualities. They play a role in traditional herbal remedies and are under investigation for antibacterial, antineoplastic, and other pharmaceutical functions. Terpenoids contribute to the scent of eucalyptus, the flavors of cinnamon, cloves, and ginger, the yellow color in sunflowers, and the red color in tomatoes.  Terpenoids can be classified according to the number of isoprene units used: Hemiterpenoids, 1 isoprene unit (5 carbons)  Monoterpenoids, 2 isoprene units (10C)  Sesquiterpenoids, 3 isoprene units (15C)  Diterpenoids, 4 isoprene units (20C) (e.g. ginkgolides)  Sesterterpenoids, 5 isoprene units (25C)  Triterpenoids, 6 isoprene units (30C) (e.g. sterols)  T etraterpenoids, 8 isoprene units (40C) (e.g. carotenoids)  Polyterpenoid with a larger number of isoprene units  From Wikipedia 12 6

  7. 9/18/2014 Terpenoids 13 Terpenoids, cont. 14 7

  8. 9/18/2014 Iron Complexation 15 Van Krevlin Plot 16 8

  9. 9/18/2014 Putting it all together? Hydroxy Acid OH COOH From Thurman, 1985 HO COOH COOH Aliphatic HOOC Dicarboxylic Phenolic-OH Acid O OH HOOC HO Aromatic Aliphatic Acid Dicarboxylic Acid H 3 CO COOH COOH  Many identifiable precursor structures Aromatic 17  Not practical or even possible Acid Concentrations: Pedogenic  Land Sources  From Woody & non-woody plants, lignin, etc.  Depends on vegetation, soil, hydrology  Attenuated by adsorption to clay soils  Parallel watersheds in Australia (Cotsaris et al., 1994 [Chamonix proceedings])  Clearwater Creek, high clay content: 2.5 mg/L TOC  Redwater Creek, sandy soil: 31.7 mg/L TOC 18 9

  10. 9/18/2014 Concentrations: Aquagenic  Algal & aquatic plant Sources  Depend on nutrient levels / trophic state  Concentrations in Lakes (mg/L) (Thurman, 1985) Trophic State Mean DOC Range Oligotrophic 2 1-3 Mesotrophic 3 2-4  Groundwater average: 0.7 mg/L Eutrophic 10 3-34  No algae, much soil attenuation Dystrophic 30 20-50 19 MW vs type  Algogenic organic matter (AOM)  Proteins & carbohydrates  Large polymers with monomers Henderson et al., 2008 20 10

  11. 9/18/2014 Algae as THM Precursors  From: Plummer & Edzwald, 2001 [ES&T:35:3661]  Scenedesmus quadricauda ~25% from EOM Cyclotella sp. Algae 21 pH 7, 20-24ºC, chlorine excess Algae as TCAA Precursors  Not much impact? Algae 22 pH 7, 20-24ºC, chlorine excess 11

  12. 9/18/2014 Algae as DCAA Precursors  Are Algae important sources of dihalo-AA precursors? Algae 23 pH 7, 20-24ºC, chlorine excess Annual TOC Cycles 18 Hanahan WTP  Edisto River TOC: Kornegay 16 Charleston, SC SUVA: ICR  Former source 14 TOC: ICR TOC (mg/L) or SUVA (m -1 ) for Charleston’s 12 (SC) Hanahan Period 10 of High WTP 8 Runoff  Flushing of TOC 6 during high 4 rainfall months 2 Influent Water (cold period) 0 0 2 4 6 8 10 12 14 16 18 20 ICR Month 6/1/1997 7/1/1997 8/1/1997 9/1/1997 10/1/1997 11/1/1997 12/1/1997 1/1/1998 2/1/1998 3/1/1998 4/1/1998 5/1/1998 6/1/1998 7/1/1998 8/1/1998 9/1/1998 10/1/1998 11/1/1998 12/1/1998 1/1/1999 2/1/1999 24 Approximate Date 12

  13. 9/18/2014 Annual TOC Cycles High photosynthetic 4.0 activity TOC: Kornegay data SUVA: ICR 3.5  Lake Lanier TOC: ICR TOC (mg/L) or SUVA (m -1 ) 3.0  Source for Gwinnett Co.’s 2.5 (GA) Lanier 2.0 WTP 1.5  High clay content 1.0 in watershed Lake Lanier WTP 0.5 Gwinnet Co., GA Influent Water 0.0 0 2 4 6 8 10 12 14 16 18 20 ICR Month 6/1/1997 7/1/1997 8/1/1997 9/1/1997 10/1/1997 11/1/1997 12/1/1997 1/1/1998 2/1/1998 3/1/1998 4/1/1998 5/1/1998 6/1/1998 7/1/1998 8/1/1998 9/1/1998 10/1/1998 11/1/1998 12/1/1998 1/1/1999 2/1/1999 25 Approximate Date 0.10 6 0.09 DOC 5 0.08 0.07 4 -1 ) DOC (mg/L) 0.06 UV 285 (cm 0.05 3 UV 0.04 2 0.03 0.02 1 Spatial and Temporal 0.01 0.00 0 Distribution of DOC 50 100 150 200 250 300 350 Day of Year and UV absorbing Substances in Lake UV 285 (cm -1 ) UV 285 (cm -1 ) Bret 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08 0 0 (from Zumstein UV 2 DOC 2 UV DOC & Buffle, 1989; 4 4 6 6 and Krasner et Depth (m) Depth (m) 8 8 10 10 al., 1996) 12 12 14 14 16 16 18 18 20 20 0 1 2 3 4 5 26 0 1 2 3 4 5 DOC (mg/L) DOC (mg/L) 13

  14. 9/18/2014 THM Precursor Study  Cannonsville Reservoir Epilimnion  Catskill- Delaware water Hypolimnion supply for NYC  Stepczuk et al., 1998  J. Lake Res. Mgmt. Both Epilimnion 14(2-3)356 27 Plant biochemicals  Low  Sugars, starches  Moderate  Proteins  Low  Cellulose  Low  Hemicellulose  Low  Fats & waxes  high  Lignins & phenolics Decreasing biodegradability Terpenoids - ?? Simplification: Doesn’t explicitly consider bacterial metabolites 28 14

  15. 9/18/2014 29 Dihalo and Trihalo DBPs Humic Acid Fulvic Acid  NOM Fractions Weak Hydrophobic Acids Hydrophobic Bases Hydrophobic Neutrals  Evidence for 1.4 Hydrophilic Acids Ultra Hydrophilic Acids Raw Waters greater Hydrophilic Bases CX 2 /CX 3 Formation Potential (  M/  1.2 Hydrophilic Neutrals importance of regression dihalo species in 1.0 non-lignin based 0.8 b[0]=0.4813029679 NOM b[1]=-0.0290898677 r ²=0.1466315169 0.6 0.4 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 30 Specific UV absorbance @ 254 nm (L/m/mg-C) 15

  16. 9/18/2014 DHAN/THM Ratio vs SUVA 2.1 Humic Acid 2.0 All Samples Fulvic Acid 1.9 DHAN/THM Formation Potential (  g/  g) 1.8 Weak Hydrophobic Acids 1.7 Hydrophobic Bases 1.6 1.5 Hydrophobic Neutrals Hydrophilic Acids 0.4 Ultra Hydrophilic Acids Hydrophilic Bases Hydrophilic Neutrals 0.3 regression b[0]=0.20 0.2 b[1]=-0.0177 r ²=9.2e-3 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 31 Specific UV absorbance @ 254 nm (L/m/mg-C) DOC and runoff  Ogeechee River (GA)  From Aiken & Cotsaris, 1995  [JAWWA 87(1)36] 32 16

  17. 9/18/2014 What is EfOM? Drinking NOM, NOM, water Wastewater NOM DBPs Water treatment DBPs Municipal source treatment plant use plant EfOM: NOM, DBPs Ambient water (river) Wastewater SMPs reclamation and reuse EfOM  NOM + SMPs 33 from : Krasner & Am y  To next lecture Dave Reckhow - Organics In W & WW 17

Recommend


More recommend