optimization problems over noncompact semialgebraic sets
play

Optimization Problems over Noncompact Semialgebraic Sets Lihong Zhi - PowerPoint PPT Presentation

Optimization Problems over Noncompact Semialgebraic Sets Lihong Zhi Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, China Joint work with Feng Guo, Mohab Safey El Din, Chu Wang ISSAC15, July 69, 2015, Bath,


  1. Theta Bodies: p | S ≥ 0 ← − p ∈ Q k ( G ) Definition The k -th theta body of G = { g 1 , . . . , g m } is defined as TH k ( G ) := { x ∈ R n | p ( x ) ≥ 0 , ∀ p ∈ Q k ( G ) ∩ R [ X ] 1 } . ◮ We have TH 1 ( G ) ⊇ TH 2 ( G ) ⊇ · · · ⊇ TH k +1 ( G ) ⊇ · · · ⊇ cl(co( S )) .

  2. Theta Bodies: p | S ≥ 0 ← − p ∈ Q k ( G ) Definition The k -th theta body of G = { g 1 , . . . , g m } is defined as TH k ( G ) := { x ∈ R n | p ( x ) ≥ 0 , ∀ p ∈ Q k ( G ) ∩ R [ X ] 1 } . ◮ We have TH 1 ( G ) ⊇ TH 2 ( G ) ⊇ · · · ⊇ TH k +1 ( G ) ⊇ · · · ⊇ cl(co( S )) . ◮ When Q ( G ) is Archimedean, by Putinar’s Positivstellensatz, p | S > 0 = ⇒ p ∈ Q k ( G ) for some k ∈ N . Hence, we have ∞ � cl(co( S )) = TH k ( G ) . k =1

  3. Theta Bodies: p | S ≥ 0 ← − p ∈ Q k ( G ) Definition The k -th theta body of G = { g 1 , . . . , g m } is defined as TH k ( G ) := { x ∈ R n | p ( x ) ≥ 0 , ∀ p ∈ Q k ( G ) ∩ R [ X ] 1 } . ◮ We have TH 1 ( G ) ⊇ TH 2 ( G ) ⊇ · · · ⊇ TH k +1 ( G ) ⊇ · · · ⊇ cl(co( S )) . ◮ When Q ( G ) is Archimedean, by Putinar’s Positivstellensatz, p | S > 0 = ⇒ p ∈ Q k ( G ) for some k ∈ N . Hence, we have ∞ � cl(co( S )) = TH k ( G ) . k =1 ◮ If PP-BDR holds for S with fixed order k then cl (co( S )) = TH k ( G ) .

  4. Theta Bodies: p | S ≥ 0 ← − p ∈ Q k ( G ) Definition The k -th theta body of G = { g 1 , . . . , g m } is defined as TH k ( G ) := { x ∈ R n | p ( x ) ≥ 0 , ∀ p ∈ Q k ( G ) ∩ R [ X ] 1 } . ◮ We have TH 1 ( G ) ⊇ TH 2 ( G ) ⊇ · · · ⊇ TH k +1 ( G ) ⊇ · · · ⊇ cl(co( S )) . ◮ When Q ( G ) is Archimedean, by Putinar’s Positivstellensatz, p | S > 0 = ⇒ p ∈ Q k ( G ) for some k ∈ N . Hence, we have ∞ � cl(co( S )) = TH k ( G ) . k =1 ◮ If PP-BDR holds for S with fixed order k then cl (co( S )) = TH k ( G ) . See [Gouveia, Parrilo, Thomas] for V R ( I ) being compact .

  5. Example [Gouveia, Thomas] Given two curves cut out by g 1 = X 4 1 − X 2 2 − X 2 3 , g 2 = X 4 1 + X 2 1 + X 2 2 − 1 . Its first theta body is an ellipsoid { x ∈ R 3 | x 2 1 + 2 x 2 2 + x 2 3 ≤ 1 }

  6. Example [Gouveia, Thomas] Given two curves cut out by g 1 = X 4 1 − X 2 2 − X 2 3 , g 2 = X 4 1 + X 2 1 + X 2 2 − 1 . Its first theta body is an ellipsoid { x ∈ R 3 | x 2 1 + 2 x 2 2 + x 2 3 ≤ 1 } The second and third theta bodies:

  7. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given y = { y α } , let L y : R [ X ] → R be the linear functional �� � � q α X α �→ q α y α . L y α α

  8. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given y = { y α } , let L y : R [ X ] → R be the linear functional �� � � q α X α �→ q α y α . L y α α Moment matrix M k ( y ) with rows and columns indexed in the basis X α M k ( y )( α, β ) := L y ( X α X β ) = y α + β , α, β ∈ N n k , | α | , | β | ≤ k.

  9. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given y = { y α } , let L y : R [ X ] → R be the linear functional �� � � q α X α �→ q α y α . L y α α Moment matrix M k ( y ) with rows and columns indexed in the basis X α M k ( y )( α, β ) := L y ( X α X β ) = y α + β , α, β ∈ N n k , | α | , | β | ≤ k. For instance, in R 2       1 1 X 1 X 2 y 00 y 10 y 01  � � X 2 1 =  �→ M 1 ( y ) = X 1 X 1 X 2 X 1 X 1 X 2 y 10 y 20 y 11   1   X 2 X 2 X 2 X 1 X 2 y 01 y 11 y 02 2

  10. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given y = { y α } , let L y : R [ X ] → R be the linear functional �� � � q α X α �→ q α y α . L y α α Moment matrix M k ( y ) with rows and columns indexed in the basis X α M k ( y )( α, β ) := L y ( X α X β ) = y α + β , α, β ∈ N n k , | α | , | β | ≤ k. For instance, in R 2       1 1 X 1 X 2 y 00 y 10 y 01  � � X 2 1 =  �→ M 1 ( y ) = X 1 X 1 X 2 X 1 X 1 X 2 y 10 y 20 y 11   1   X 2 X 2 X 2 X 1 X 2 y 01 y 11 y 02 2 ◮ We have M k ( y ) � 0 ⇐ ⇒ L ( h 2 ) ≥ 0 , ∀ h ∈ R [ X ] k

  11. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given a polynomial p ( X ) = � γ p γ X γ , let d p = ⌈ deg( p ) / 2 ⌉ .

  12. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given a polynomial p ( X ) = � γ p γ X γ , let d p = ⌈ deg( p ) / 2 ⌉ . Localizing Moment Matrix M k ( py ) with rows and columns indexed in the basis X α � M k ( py )( α, β ) = L y ( pX α X β ) = p γ y α + β + γ , α, β ∈ N n k , | α | , | β | ≤ k γ ∈ N n

  13. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given a polynomial p ( X ) = � γ p γ X γ , let d p = ⌈ deg( p ) / 2 ⌉ . Localizing Moment Matrix M k ( py ) with rows and columns indexed in the basis X α � M k ( py )( α, β ) = L y ( pX α X β ) = p γ y α + β + γ , α, β ∈ N n k , | α | , | β | ≤ k γ ∈ N n For instance, in R 2 , with p ( X 1 , X 2 ) = 1 − X 2 1 − X 2 2   1 − y 20 − y 02 y 10 − y 30 − y 12 y 01 − y 21 − y 03   M 1 ( py ) = y 10 − y 30 − y 12 y 20 − y 40 − y 22 y 11 − y 31 − y 13 y 01 − y 21 − y 03 y 11 − y 31 − y 13 y 02 − y 22 − y 04

  14. Lasserre’s Semidefinite Relaxations of cl (co( S )) Given a polynomial p ( X ) = � γ p γ X γ , let d p = ⌈ deg( p ) / 2 ⌉ . Localizing Moment Matrix M k ( py ) with rows and columns indexed in the basis X α � M k ( py )( α, β ) = L y ( pX α X β ) = p γ y α + β + γ , α, β ∈ N n k , | α | , | β | ≤ k γ ∈ N n For instance, in R 2 , with p ( X 1 , X 2 ) = 1 − X 2 1 − X 2 2   1 − y 20 − y 02 y 10 − y 30 − y 12 y 01 − y 21 − y 03   M 1 ( py ) = y 10 − y 30 − y 12 y 20 − y 40 − y 22 y 11 − y 31 − y 13 y 01 − y 21 − y 03 y 11 − y 31 − y 13 y 02 − y 22 − y 04 We have ⇒ L y ( h 2 p ) ≥ 0 , ∀ h ∈ R [ X ] , deg( h ) ≤ k − d p . ◮ M k − d p ( py ) � 0 ⇐

  15. Lasserre’s Semidefinite Representation of cl (co( S )) � n + k � Let G = { g 1 , . . . , g m } , s ( k ) := and k j := ⌈ deg g j / 2 ⌉ . n

  16. Lasserre’s Semidefinite Representation of cl (co( S )) � n + k � Let G = { g 1 , . . . , g m } , s ( k ) := and k j := ⌈ deg g j / 2 ⌉ . n Definition The k -th Lasserre’s relaxation is defined as:   ∃ y ∈ R s (2 k ) , s.t. L y (1) = 1 ,     x ∈ R n Ω k ( G ) := L y ( X i ) = x i , i = 1 , . . . , n, M k ( y ) � 0 , .     M k − k j ( g j y ) � 0 , j = 1 , . . . , m,

  17. Lasserre’s Semidefinite Representation of cl (co( S )) � n + k � Let G = { g 1 , . . . , g m } , s ( k ) := and k j := ⌈ deg g j / 2 ⌉ . n Definition The k -th Lasserre’s relaxation is defined as:   ∃ y ∈ R s (2 k ) , s.t. L y (1) = 1 ,     x ∈ R n Ω k ( G ) := L y ( X i ) = x i , i = 1 , . . . , n, M k ( y ) � 0 , .     M k − k j ( g j y ) � 0 , j = 1 , . . . , m, ◮ When Q ( G ) is Archimedean, by Putinar’s Positivstellensatz ( dual side ), ∞ � cl(co( S )) = cl (Ω k ( G )) . k =1

  18. Lasserre’s Semidefinite Representation of cl (co( S )) � n + k � Let G = { g 1 , . . . , g m } , s ( k ) := and k j := ⌈ deg g j / 2 ⌉ . n Definition The k -th Lasserre’s relaxation is defined as:   ∃ y ∈ R s (2 k ) , s.t. L y (1) = 1 ,     x ∈ R n Ω k ( G ) := L y ( X i ) = x i , i = 1 , . . . , n, M k ( y ) � 0 , .     M k − k j ( g j y ) � 0 , j = 1 , . . . , m, ◮ When Q ( G ) is Archimedean, by Putinar’s Positivstellensatz ( dual side ), ∞ � cl(co( S )) = cl (Ω k ( G )) . k =1 ◮ If PP-BDR ( p > 0 on S then p ∈ Q k ( G ) ) holds for S with order k , then co( S ) = Ω k ( G ) .

  19. Lasserre’s Semidefinite Representation of cl (co( S )) � n + k � Let G = { g 1 , . . . , g m } , s ( k ) := and k j := ⌈ deg g j / 2 ⌉ . n Definition The k -th Lasserre’s relaxation is defined as:   ∃ y ∈ R s (2 k ) , s.t. L y (1) = 1 ,     x ∈ R n Ω k ( G ) := L y ( X i ) = x i , i = 1 , . . . , n, M k ( y ) � 0 , .     M k − k j ( g j y ) � 0 , j = 1 , . . . , m, ◮ When Q ( G ) is Archimedean, by Putinar’s Positivstellensatz ( dual side ), ∞ � cl(co( S )) = cl (Ω k ( G )) . k =1 ◮ If PP-BDR ( p > 0 on S then p ∈ Q k ( G ) ) holds for S with order k , then co( S ) = Ω k ( G ) . ◮ co( S ) ⊆ Ω k ( G ) ⊆ TH k ( G ) . If Q k ( G ) is closed , TH k ( G ) = cl(Ω k ( G )) .

  20. When S is not Compact Consider the basic semialgebraic set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } .

  21. When S is not Compact Consider the basic semialgebraic set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } . For any linear function in Q k ( G ) , c 1 X 1 + c 2 X 2 + c 0 = σ 0 ( X 1 , X 2 ) + σ 1 ( X 1 , X 2 ) X 1 + σ 2 ( X 1 , X 2 )( X 2 1 − X 3 2 ) ⇒ c 1 0 + c 2 X 2 + c 0 = σ 0 (0 , X 2 ) + σ 1 (0 , X 2 )0 + σ 2 (0 , X 2 )(0 2 − X 3 = 2 ) TH k ( G ) = cl ( Ω k ( G )) = { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 } . = ⇒ c 2 = 0 = ⇒ cl (co( S )) cl (Ω k ( G )) = TH k ( G )

  22. When S is not Compact Consider the basic semialgebraic set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } . For any linear function in Q k ( G ) , c 1 X 1 + c 2 X 2 + c 0 = σ 0 ( X 1 , X 2 ) + σ 1 ( X 1 , X 2 ) X 1 + σ 2 ( X 1 , X 2 )( X 2 1 − X 3 2 ) ⇒ c 1 0 + c 2 X 2 + c 0 = σ 0 (0 , X 2 ) + σ 1 (0 , X 2 )0 + σ 2 (0 , X 2 )(0 2 − X 3 = 2 ) TH k ( G ) = cl ( Ω k ( G )) = { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 } . = ⇒ c 2 = 0 = ⇒

  23. When S is not Compact Consider the basic semialgebraic set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } . For any linear function in Q k ( G ) , c 1 X 1 + c 2 X 2 + c 0 = σ 0 ( X 1 , X 2 ) + σ 1 ( X 1 , X 2 ) X 1 + σ 2 ( X 1 , X 2 )( X 2 1 − X 3 2 ) ⇒ c 1 0 + c 2 X 2 + c 0 = σ 0 (0 , X 2 ) + σ 1 (0 , X 2 )0 + σ 2 (0 , X 2 )(0 2 − X 3 = 2 ) TH k ( G ) = cl ( Ω k ( G )) = { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 } . = ⇒ c 2 = 0 = ⇒ cl (co( S )) cl (Ω k ( G )) = TH k ( G )

  24. Semidefinite Representation of a Noncompact Set S ◮ Homogenization f ( � ˜ X ) = X deg( f ) f ( X/X 0 ) ∈ R [ X 0 , X 1 , . . . , X n ] = R [ � X ] . 0

  25. Semidefinite Representation of a Noncompact Set S ◮ Homogenization f ( � ˜ X ) = X deg( f ) f ( X/X 0 ) ∈ R [ X 0 , X 1 , . . . , X n ] = R [ � X ] . 0 ◮ Lifting S to a cone � S 1 : S := { x ∈ R n | g 1 ( x ) ≥ 0 , . . . , g m ( x ) ≥ 0 } , x ∈ R n +1 | ˜ � S 1 := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 > 0 } .

  26. Semidefinite Representation of a Noncompact Set S ◮ Homogenization f ( � ˜ X ) = X deg( f ) f ( X/X 0 ) ∈ R [ X 0 , X 1 , . . . , X n ] = R [ � X ] . 0 ◮ Lifting S to a cone � S 1 : S := { x ∈ R n | g 1 ( x ) ≥ 0 , . . . , g m ( x ) ≥ 0 } , x ∈ R n +1 | ˜ � S 1 := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 > 0 } . � � ˜ � ◮ f ( x ) ≥ 0 on S ⇐ ⇒ f ( ˜ x ) ≥ 0 on cl . S 1

  27. Semidefinite Representation of a Noncompact Set S ◮ Homogenization f ( � ˜ X ) = X deg( f ) f ( X/X 0 ) ∈ R [ X 0 , X 1 , . . . , X n ] = R [ � X ] . 0 ◮ Lifting S to a cone � S 1 : S := { x ∈ R n | g 1 ( x ) ≥ 0 , . . . , g m ( x ) ≥ 0 } , x ∈ R n +1 | ˜ � S 1 := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 > 0 } . � � ˜ � ◮ f ( x ) ≥ 0 on S ⇐ ⇒ f ( ˜ x ) ≥ 0 on cl . S 1 ◮ Compactification: x ∈ R n +1 | ˜ � x � 2 S := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 ≥ 0 , � ˜ 2 = 1 } .

  28. Semidefinite Representation of a Noncompact Set S ◮ Homogenization f ( � ˜ X ) = X deg( f ) f ( X/X 0 ) ∈ R [ X 0 , X 1 , . . . , X n ] = R [ � X ] . 0 ◮ Lifting S to a cone � S 1 : S := { x ∈ R n | g 1 ( x ) ≥ 0 , . . . , g m ( x ) ≥ 0 } , x ∈ R n +1 | ˜ � S 1 := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 > 0 } . � � ˜ � ◮ f ( x ) ≥ 0 on S ⇐ ⇒ f ( ˜ x ) ≥ 0 on cl . S 1 ◮ Compactification: x ∈ R n +1 | ˜ � x � 2 S := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 ≥ 0 , � ˜ 2 = 1 } . x ) ≥ 0 on � ◮ f ( x ) ≥ 0 on S � ˜ f ( ˜ S .

  29. Semidefinite Representation of a Noncompact Set S ◮ Homogenization f ( � ˜ X ) = X deg( f ) f ( X/X 0 ) ∈ R [ X 0 , X 1 , . . . , X n ] = R [ � X ] . 0 ◮ Lifting S to a cone � S 1 : S := { x ∈ R n | g 1 ( x ) ≥ 0 , . . . , g m ( x ) ≥ 0 } , x ∈ R n +1 | ˜ � S 1 := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 > 0 } . � � ˜ � ◮ f ( x ) ≥ 0 on S ⇐ ⇒ f ( ˜ x ) ≥ 0 on cl . S 1 ◮ Compactification: x ∈ R n +1 | ˜ � x � 2 S := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 ≥ 0 , � ˜ 2 = 1 } . x ) ≥ 0 on � ◮ f ( x ) ≥ 0 on S � ˜ f ( ˜ S . x 2 ≥ 0 on { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 } but x 2 can be < 0 on � S .

  30. Semidefinite Representation of a Noncompact Set S Definition � � � = � S is closed at ∞ if cl S 1 S 2 where x ∈ R n +1 | ˜ � { ˜ x ) ≥ 0 , . . . , ˜ x ) ≥ 0 , x 0 > 0 } , S 1 := g 1 (˜ g m (˜ x ∈ R n +1 | ˜ � S 2 := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 ≥ 0 } .

  31. Semidefinite Representation of a Noncompact Set S Definition � � � = � S is closed at ∞ if cl S 1 S 2 where x ∈ R n +1 | ˜ � { ˜ x ) ≥ 0 , . . . , ˜ x ) ≥ 0 , x 0 > 0 } , S 1 := g 1 (˜ g m (˜ x ∈ R n +1 | ˜ � S 2 := { ˜ g 1 (˜ x ) ≥ 0 , . . . , ˜ g m (˜ x ) ≥ 0 , x 0 ≥ 0 } . S = { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 } , S 2 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 0 x 2 − x 2 � 1 ≥ 0 , x 0 ≥ 0 } , � � = { (0 , 0 , x 2 ) ∈ R 3 | x 2 < 0 } = � � S 2 \ cl S 1 ⇒ S is not closed at ∞ .

  32. Modified Lasserre’s Hierarchy and Theta Body x ∈ R n +1 | ˜ � x � 2 S := { ˜ x ) ≥ 0 , . . . , ˜ x ) ≥ 0 , x 0 ≥ 0 , � ˜ 2 = 1 } , g 1 (˜ g m (˜ � g m , X 0 , � � 2 − 1 , 1 − � � X � 2 X � 2 G := { ˜ g 1 , . . . , ˜ 2 } .

  33. Modified Lasserre’s Hierarchy and Theta Body x ∈ R n +1 | ˜ � x � 2 S := { ˜ x ) ≥ 0 , . . . , ˜ x ) ≥ 0 , x 0 ≥ 0 , � ˜ 2 = 1 } , g 1 (˜ g m (˜ � g m , X 0 , � � 2 − 1 , 1 − � � X � 2 X � 2 G := { ˜ g 1 , . . . , ˜ 2 } . Modified Lasserre’s Hierarchy   ∃ y ∈ R ˜ s (2 k ) , s.t. L y ( X 0 ) = 1 ,           L y ( X i ) = x i , i = 1 , . . . , n, Ω k ( � � x ∈ R n G ) := .   M k ( y ) � 0 , M k − k j (˜ g j y ) � 0 , j = 1 , . . . , m         M k − 1 ( X 0 y ) � 0 , M k − 1 (( � � X � 2 2 − 1) y ) = 0

  34. Modified Lasserre’s Hierarchy and Theta Body x ∈ R n +1 | ˜ � x � 2 S := { ˜ x ) ≥ 0 , . . . , ˜ x ) ≥ 0 , x 0 ≥ 0 , � ˜ 2 = 1 } , g 1 (˜ g m (˜ � g m , X 0 , � � 2 − 1 , 1 − � � X � 2 X � 2 G := { ˜ g 1 , . . . , ˜ 2 } . Modified Lasserre’s Hierarchy   ∃ y ∈ R ˜ s (2 k ) , s.t. L y ( X 0 ) = 1 ,           L y ( X i ) = x i , i = 1 , . . . , n, Ω k ( � � x ∈ R n G ) := .   M k ( y ) � 0 , M k − k j (˜ g j y ) � 0 , j = 1 , . . . , m         M k − 1 ( X 0 y ) � 0 , M k − 1 (( � � X � 2 2 − 1) y ) = 0 Modified Theta Body G ) := { x ∈ R n | ˜ TH k ( � � ∀ ˜ l ∈ Q k ( � G ) ∩ P [ � l (1 , x ) ≥ 0 , X ] 1 } . where P [ � X ] 1 is a set of homogeneous polynomials of degree one in R [ � X ] .

  35. Pointed Convex Cone A convex cone K is pointed if it is closed and contains no lines .

  36. Pointed Convex Cone A convex cone K is pointed if it is closed and contains no lines .

  37. Pointed Convex Cone A convex cone K is pointed if it is closed and contains no lines . ⇒ { ∃ c ∈ R n s.t. � c , x � > 0 for all x ∈ K \{ 0 } } , ◮ K is pointed ⇐ Remark: � c , x � = c T x = c 1 x 1 + · · · + c n x n .

  38. Modified Lasserre’s Hierarchy and Theta Body Assumptions [Guo, Wang, Zhi] � � � = � ◮ S is closed at ∞ , i.e., cl S 1 S 2 .

  39. Modified Lasserre’s Hierarchy and Theta Body Assumptions [Guo, Wang, Zhi] � � � = � ◮ S is closed at ∞ , i.e., cl S 1 S 2 . ◮ The convex cone co(cl( � S 1 )) is pointed .

  40. Modified Lasserre’s Hierarchy and Theta Body Assumptions [Guo, Wang, Zhi] � � � = � ◮ S is closed at ∞ , i.e., cl S 1 S 2 . ◮ The convex cone co(cl( � S 1 )) is pointed . Under the assumptions [Guo, Wang, Zhi] � � Ω k ( � � ⊆ � TH k ( � ◮ cl(co( S )) ⊆ cl G ) G ) for every k ∈ N and � � ∞ ∞ � � Ω k ( � � TH k ( � � cl(co( S )) = cl G ) = G ) . k =1 k =1

  41. Modified Lasserre’s Hierarchy and Theta Body Assumptions [Guo, Wang, Zhi] � � � = � ◮ S is closed at ∞ , i.e., cl S 1 S 2 . ◮ The convex cone co(cl( � S 1 )) is pointed . Under the assumptions [Guo, Wang, Zhi] � � Ω k ( � � ⊆ � TH k ( � ◮ cl(co( S )) ⊆ cl G ) G ) for every k ∈ N and � � ∞ ∞ � � Ω k ( � � TH k ( � � cl(co( S )) = cl G ) = G ) . k =1 k =1 ◮ If the PP-BDR property holds for � S with order k , then � � Ω k ( � � = � TH k ( � cl(co( S )) = cl G ) G ) .

  42. Modified Lasserre’s Hierarchy and Theta Body Assumptions [Guo, Wang, Zhi] � � � = � ◮ S is closed at ∞ , i.e., cl S 1 S 2 . ◮ The convex cone co(cl( � S 1 )) is pointed . Under the assumptions [Guo, Wang, Zhi] � � Ω k ( � � ⊆ � TH k ( � ◮ cl(co( S )) ⊆ cl G ) G ) for every k ∈ N and � � ∞ ∞ � � Ω k ( � � TH k ( � � cl(co( S )) = cl G ) = G ) . k =1 k =1 ◮ If the PP-BDR property holds for � S with order k , then � � Ω k ( � � = � TH k ( � cl(co( S )) = cl G ) G ) . � � ◮ If Q k ( � G ) is closed, then � TH k ( � Ω k ( � � G ) = cl G ) .

  43. Example (continued) Consider the set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } , we have S 1 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 > 0 } , S 2 := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 } , S := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 , x 2 0 + x 2 1 + x 2 2 = 1 } .

  44. Example (continued) Consider the set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } , we have S 1 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 > 0 } , S 2 := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 } , S := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 , x 2 0 + x 2 1 + x 2 2 = 1 } . � � � = � cl S 1 S 2 ⇒ S is closed at ∞

  45. Example (continued) Consider the set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } , we have S 1 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 > 0 } , S 2 := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 } , S := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 , x 2 0 + x 2 1 + x 2 2 = 1 } . � � � = � cl S 1 S 2 ⇒ S is closed at ∞ 2 X 0 + 2 X 1 − 3 X 2 > 0 on co( � S 2 ) \{ 0 } ⇒ co( � S 2 ) is pointed

  46. Example (continued) Consider the set S := { ( x 1 , x 2 ) ∈ R 2 | x 1 ≥ 0 , x 2 1 − x 3 2 ≥ 0 } , we have S 1 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 > 0 } , S 2 := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 } , S := { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 1 ≥ 0 , x 0 x 2 � 1 − x 3 2 ≥ 0 , x 0 ≥ 0 , x 2 0 + x 2 1 + x 2 2 = 1 } . � � � = � cl S 1 S 2 ⇒ S is closed at ∞ 2 X 0 + 2 X 1 − 3 X 2 > 0 on co( � S 2 ) \{ 0 } ⇒ co( � S 2 ) is pointed � � Ω 3 ( � S 2 S G )

  47. Essentiality of Closedness at Infinity The convergence might fail if co(cl( � S 1 ) is pointed but S is not closed at infinity .

  48. Essentiality of Closedness at Infinity The convergence might fail if co(cl( � S 1 ) is pointed but S is not closed at infinity . Consider the set S := { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 } . S 1 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 0 x 2 − x 2 � 1 ≥ 0 , x 0 > 0 } , S 2 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 0 x 2 − x 2 � 1 ≥ 0 , x 0 ≥ 0 } .

  49. Essentiality of Closedness at Infinity The convergence might fail if co(cl( � S 1 ) is pointed but S is not closed at infinity . Consider the set S := { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 } . S 1 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 0 x 2 − x 2 � 1 ≥ 0 , x 0 > 0 } , S 2 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 0 x 2 − x 2 � 1 ≥ 0 , x 0 ≥ 0 } . � � = { (0 , 0 , x 2 ) ∈ R 3 | x 2 < 0 } � = ∅ = ◮ � � S 2 \ cl S 1 ⇒ S is not closed at ∞ .

  50. Essentiality of Closedness at Infinity The convergence might fail if co(cl( � S 1 ) is pointed but S is not closed at infinity . Consider the set S := { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 } . S 1 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 0 x 2 − x 2 � 1 ≥ 0 , x 0 > 0 } , S 2 = { ( x 0 , x 1 , x 2 ) ∈ R 3 | x 0 x 2 − x 2 � 1 ≥ 0 , x 0 ≥ 0 } . � � = { (0 , 0 , x 2 ) ∈ R 3 | x 2 < 0 } � = ∅ = ◮ � � S 2 \ cl S 1 ⇒ S is not closed at ∞ . � � = R 2 � = cl (co( S )) . ◮ � TH k ( � Ω k ( � � G ) = cl G )

  51. Closedness at Infinity We notice that the property of closedness at ∞ depends not only on S but also on its generators .

  52. Closedness at Infinity We notice that the property of closedness at ∞ depends not only on S but also on its generators . ◮ Let S ′ := { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 , 1 + x 2 ≥ 0 } .

  53. Closedness at Infinity We notice that the property of closedness at ∞ depends not only on S but also on its generators . ◮ Let S ′ := { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 , 1 + x 2 ≥ 0 } . ◮ S = S ′ since 1 + X 2 > 0 on S.

  54. Closedness at Infinity We notice that the property of closedness at ∞ depends not only on S but also on its generators . ◮ Let S ′ := { ( x 1 , x 2 ) ∈ R 2 | x 2 − x 2 1 ≥ 0 , 1 + x 2 ≥ 0 } . ◮ S = S ′ since 1 + X 2 > 0 on S. ◮ S ′ is closed at ∞ .

  55. Essentiality of Pointedness The convergence might fail if S is closed at infinity but co(cl( � S 1 )) is not pointed .

  56. Essentiality of Pointedness The convergence might fail if S is closed at infinity but co(cl( � S 1 )) is not pointed . Example Consider the set S = { ( x 1 , x 2 ) ∈ R 2 | x 3 2 − x 2 1 ≥ 0 } , we have � S 1 = { x 3 2 − x 2 1 x 0 ≥ 0 , x 0 > 0 } , S 2 = { x 3 � 2 − x 2 1 x 0 ≥ 0 , x 0 ≥ 0 } .

  57. Essentiality of Pointedness The convergence might fail if S is closed at infinity but co(cl( � S 1 )) is not pointed . Example Consider the set S = { ( x 1 , x 2 ) ∈ R 2 | x 3 2 − x 2 1 ≥ 0 } , we have � S 1 = { x 3 2 − x 2 1 x 0 ≥ 0 , x 0 > 0 } , S 2 = { x 3 � 2 − x 2 1 x 0 ≥ 0 , x 0 ≥ 0 } . ◮ The convex cone co(cl( � S 1 )) is not pointed since � � √ ǫ ) = (0 , ± 1 , 0) and ( 0 , ± 1 , 0 ) ∈ cl � lim ǫ → 0 ( ǫ, ± 1 , ⇒ 3 S 1 = c 0 X 0 + c 1 X 1 + c 2 X 2 will be ± c 1 at (0 , ± 1 , 0) .

  58. Essentiality of Pointedness The convergence might fail if S is closed at infinity but co(cl( � S 1 )) is not pointed . Example Consider the set S = { ( x 1 , x 2 ) ∈ R 2 | x 3 2 − x 2 1 ≥ 0 } , we have � S 1 = { x 3 2 − x 2 1 x 0 ≥ 0 , x 0 > 0 } , S 2 = { x 3 � 2 − x 2 1 x 0 ≥ 0 , x 0 ≥ 0 } . ◮ The convex cone co(cl( � S 1 )) is not pointed since � � √ ǫ ) = (0 , ± 1 , 0) and ( 0 , ± 1 , 0 ) ∈ cl � lim ǫ → 0 ( ǫ, ± 1 , ⇒ 3 S 1 = c 0 X 0 + c 1 X 1 + c 2 X 2 will be ± c 1 at (0 , ± 1 , 0) . � � = R 2 � = cl (co( S )) . ◮ We have � TH k ( � Ω k ( � � G ) = cl G )

  59. Summary We have shown ◮ how to compute semidefinite approximations of a noncompact semialgebraic set;

  60. Summary We have shown ◮ how to compute semidefinite approximations of a noncompact semialgebraic set; ◮ under assumptions that S is closed at ∞ and co(cl( � S 1 )) is pointed , � � TH k ( � � Ω k ( � � G ) and cl G ) will converge to cl(co( S )) .

  61. Summary We have shown ◮ how to compute semidefinite approximations of a noncompact semialgebraic set; ◮ under assumptions that S is closed at ∞ and co(cl( � S 1 )) is pointed , � � TH k ( � � Ω k ( � � G ) and cl G ) will converge to cl(co( S )) . ◮ the assumptions of pointedness and closedness at infinity are essential.

  62. Outlines ◮ Semidefinite representations of the closure of the convex hull of S : � { x ∈ R n | p ( x ) ≥ 0 } . cl(co( S )) := p ∈ R [ X ] 1 ,p | S ≥ 0 ◮ Optimizing a parametric linear function over a real algebraic variety: 0 = sup x ∈ S c T x for unspecified parameters ; ◮ c ∗ ◮ S = V ∩ R n , V = { v ∈ C n | h 1 ( v ) = · · · = h p ( v ) = 0 } .

  63. Optimizing a Parametric Linear Function We consider the optimization problem: c T x = c 1 x 1 + · · · + c n x n . c ∗ 0 := sup x ∈V∩ R n where V = { v ∈ C n | h 1 ( v ) = · · · = h p ( v ) = 0 } and c = ( c 1 , . . . , c n ) are unspecified parameters .

  64. Optimizing a Parametric Linear Function We consider the optimization problem: c T x = c 1 x 1 + · · · + c n x n . c ∗ 0 := sup x ∈V∩ R n where V = { v ∈ C n | h 1 ( v ) = · · · = h p ( v ) = 0 } and c = ( c 1 , . . . , c n ) are unspecified parameters . ◮ Tarski-Seidenberg ’s theorem on quantifier elimination ensures that the optimal value function c ∗ 0 is a semialgebraic function.

  65. Optimizing a Parametric Linear Function We consider the optimization problem: c T x = c 1 x 1 + · · · + c n x n . c ∗ 0 := sup x ∈V∩ R n where V = { v ∈ C n | h 1 ( v ) = · · · = h p ( v ) = 0 } and c = ( c 1 , . . . , c n ) are unspecified parameters . ◮ Tarski-Seidenberg ’s theorem on quantifier elimination ensures that the optimal value function c ∗ 0 is a semialgebraic function. The problem is how to compute a polynomial Φ ∈ R [ c 0 , c ] s.t. c ∗ 0 can be obtained by solving Φ( c 0 , γ ) = 0 for a generic γ ∈ R n ?

  66. Previous Work ◮ Cylindrical algebraic decomposition (CAD): for any V , but limited to small n [Brown,Collins,Hong,McCallum...].

  67. Previous Work ◮ Cylindrical algebraic decomposition (CAD): for any V , but limited to small n [Brown,Collins,Hong,McCallum...]. ◮ Using KKT equations: for V being irreducible , smooth and compact in R n [Rostalski, Sturmfels].

  68. Previous Work ◮ Cylindrical algebraic decomposition (CAD): for any V , but limited to small n [Brown,Collins,Hong,McCallum...]. ◮ Using KKT equations: for V being irreducible , smooth and compact in R n [Rostalski, Sturmfels]. ◮ Using modified polar varieties: for the specialized optimization problem, V ∩ R n could be not compact [Greuet, Safey El Din].

  69. Previous Work ◮ Cylindrical algebraic decomposition (CAD): for any V , but limited to small n [Brown,Collins,Hong,McCallum...]. ◮ Using KKT equations: for V being irreducible , smooth and compact in R n [Rostalski, Sturmfels]. ◮ Using modified polar varieties: for the specialized optimization problem, V ∩ R n could be not compact [Greuet, Safey El Din]. Our goal is to compute Φ for V ∩ R n being nonsmooth or noncompact .

  70. Compact Cases The dual variety V ∗ is the Zariski closure of the set { u ∈ P n | u lies in the row space of Jac ( V ) at x ∈ V reg } .

  71. Compact Cases The dual variety V ∗ is the Zariski closure of the set { u ∈ P n | u lies in the row space of Jac ( V ) at x ∈ V reg } . Computing V ∗ [Rostalski, Sturmfels] Suppose V = { v ∈ C n | h 1 ( v ) = · · · = h p ( v ) = 0 } is smooth and J is the ideal generated by using KKT conditions : p � ∂h j c T X − c 0 , h 1 , . . . , h p , c i − µ j , i = 1 , . . . , n. ∂X i j =1

  72. Compact Cases The dual variety V ∗ is the Zariski closure of the set { u ∈ P n | u lies in the row space of Jac ( V ) at x ∈ V reg } . Computing V ∗ [Rostalski, Sturmfels] Suppose V = { v ∈ C n | h 1 ( v ) = · · · = h p ( v ) = 0 } is smooth and J is the ideal generated by using KKT conditions : p � ∂h j c T X − c 0 , h 1 , . . . , h p , c i − µ j , i = 1 , . . . , n. ∂X i j =1 We have V ∗ = J ∩ R [ c 0 , c 1 , . . . , c n ] .

  73. Compact Cases The dual variety V ∗ is the Zariski closure of the set { u ∈ P n | u lies in the row space of Jac ( V ) at x ∈ V reg } . Computing V ∗ [Rostalski, Sturmfels] Suppose V = { v ∈ C n | h 1 ( v ) = · · · = h p ( v ) = 0 } is smooth and J is the ideal generated by using KKT conditions : p � ∂h j c T X − c 0 , h 1 , . . . , h p , c i − µ j , i = 1 , . . . , n. ∂X i j =1 We have V ∗ = J ∩ R [ c 0 , c 1 , . . . , c n ] . ◮ If V is irreducible , smooth and compact in R n , then V ∗ is defined by an irreducible polynomial Φ( − c 0 , c 1 , . . . , c n ) = 0 .

Recommend


More recommend