optimal investment with partial information
play

Optimal Investment with Partial Information Tomas Bj ork - PDF document

Optimal Investment with Partial Information Tomas Bj ork Stockholm School of Economics Mark Davis Imperial College Camilla Land en Royal Institute of Technology Tomas Bj ork, 2007 Standard Problem Maximize utility of final wealth.


  1. Optimal Investment with Partial Information Tomas Bj¨ ork Stockholm School of Economics Mark Davis Imperial College Camilla Land´ en Royal Institute of Technology Tomas Bj¨ ork, 2007

  2. Standard Problem Maximize utility of final wealth. max E P [ U ( X T )] Model: dS t = αS t dt + S t σdW t , dB t = rB t dt X t = portfolio value at t u t = relative portfolio weight in stock at t Wealth dynamics dX t = X t { u t ( α − r ) + r } dt + u t X t σdW t Standard approaches: • Dynamic programming. (Merton etc) • Martingale methods. (Huang etc) Tomas Bj¨ ork, 2007 1

  3. Standard assumption: • The volatility σ and the mean rate of return α are known . Standard results: • Very explicit results. • Nice mathematics. Sad facts from real life: • The volatility σ can be estimated with some precision. • The mean rate of return α can not be estimated at all . Example: If σ = 20% and we want a 95% confidence interval for α , we have to observe S for 1600 years. Tomas Bj¨ ork, 2007 2

  4. Reformulated Problem • Model α as random variable or random process. • Take the estimation procedure explicitly into account in the optimization problem. Tomas Bj¨ ork, 2007 3

  5. Extended Standard Problem Model: dS t = α ( t, Y t ) S t dt + S t σ ( t, Y t ) dW t , • Y is a “hidden Markov process” which cannot be observed directly. • We can only observe S . Tomas Bj¨ ork, 2007 4

  6. Previous Studies • Power or exponential utility. • Y is a diffusion: (Genotte, Brennan, Brendle) • Y is a finite state Markov chain: (B¨ auerle–Rieder, Nagai–Runggaldier, Haussmann– Sass). Technique: • Filtering theory. • Use conditional density as extended state. • Dynamic programming. Results: • Very nice explicit results. • Sometimes a bit messy. • Separate study for each model. Tomas Bj¨ ork, 2007 5

  7. Object of Present Study • Study a more general problem • Avoid DynP (regularity, viscosity solutions etc). • Investigate the general structure. Tomas Bj¨ ork, 2007 6

  8. Related Zariphopoulou Problem � 1 � γX γ max E P T dS t = α ( t, Y t ) S t dt + S t σ t ( t, Y t ) dW t , dY t = µ ( t, Y t ) dt + b ( t, Y t ) dW t . Note: Both S and Y are observable . Same W driving S and Y . (Zariphopoulou allows for general correlation) Wealth dynamics dX t = X t { u t ( α t − r ) + r } dt + u t X t σdW t For simplicity we put r = 0 Tomas Bj¨ ork, 2007 7

  9.  � � uαxF x + 1 2 u 2 σ 2 x 2 F xx + µF y + 1   2 b 2 F yy + uxσbF xy F t + sup = 0 ,  u F ( T, s, y ) = x γ    γ . Ansatz: F ( t, x, y ) = x γ γ G ( t, y ) , PDE: � � 2(1 − γ ) · G 2 γα 2 γb 2 G t + 1 γαb y 2 b 2 G yy + µ + G y + 2 σ 2 (1 − γ ) G + G = 0 σ (1 − γ ) Non linear! We have a problem! Tomas Bj¨ ork, 2007 8

  10. PDE: � � G t + 1 γαb 2 b 2 G yy + µ + G y σ (1 − γ ) 2(1 − γ ) · G 2 γα 2 γb 2 y + 2 σ 2 (1 − γ ) G + G = 0 Clever idea by Zariphopoulou: G ( t, y ) = H ( t, y ) 1 − γ � � βα 2 µ + αβ H y + 1 2 b 2 H yy + H t + σ b 2 σ 2 (1 − γ ) H = 0 , H ( T, y ) = 1 . Linear! Feynman-Kac representation. Tomas Bj¨ ork, 2007 9

  11. Zariphopoulou Result • Optimal value function V ( t, x, y ) = x γ γ H ( t, y ) 1 − γ , • H is given by PDE or by � � �� � T βα 2 1 H ( t, y ) = E 0 exp (1 − γ ) σ 2 dt , t,y 2 t where the measure Q 0 has likelihood dynamics of the form � αβ � dL 0 t = L 0 dW t . t σ • The optimal control is given by σ 2 (1 − γ ) + b α σ · H y u ∗ ( t, x, y ) = H . Tomas Bj¨ ork, 2007 10

  12. What on earth is going on? Tomas Bj¨ ork, 2007 11

  13. Present Paper Model: (Ω , F , P, F ) dS t = α t S t dt + S t σ t dW t , • α and σ are general F -adapted • F S t ⊆ F t • The short rate is assumed to be zero. Wealth dynamics: dX t = u t α t X t dt + u t X t σ t dW t , Problem: E P [ U ( X T )] max u over F S -adapted portfolios. Tomas Bj¨ ork, 2007 12

  14. Strategy • Start by analyzing the completely observable case. • Go on to partially observable model. • Use filtering results to reduce the problem to the completely observable case. Tomas Bj¨ ork, 2007 13

  15. Completely observable case Model: (Ω , F , P, F ) dS t = α t S t dt + S t σ t dW t , • F t = F W t • α and σ are general F W -adapted Wealth dynamics: dX t = u t α t X t dt + u t X t σ t dW t , Problem: E P [ U ( X T )] max u over F W -adapted portfolios. Tomas Bj¨ ork, 2007 14

  16. Martingale approach Complete market, so we can separate choice of optimal wealth profile X T from optimal portfolio choice. E P [ U ( X )] max X ∈F T s.t. budget constraint E Q [ X ] = x, Rewrite budget as E P [ L T X ] = x, where L t = dQ dP , on F t Lagrangian relaxation � � L = E P [ U ( X )] − λ E P [ L T X ] − x , Tomas Bj¨ ork, 2007 15

  17. Relaxed problem � max { U ( X ) − λ ( L T X − x ) } dP. X Ω Separable problem with solution U ′ ( X ) = λL T Optimal wealth: X = F ( λL T ) , where F = ( U ′ ) − 1 The Lagrange multiplier is determined by the budget constraint E P [ L T X ] = x . Tomas Bj¨ ork, 2007 16

  18. Power utility 1 F ( y ) = y − X = F ( λL T ) , 1 − γ , Easy calculation gives us. Result: • Optimal wealth is given by X = x 1 − 1 − γ · L , T H 0 • H 0 is given by H 0 = E P � � γ L − β , β = T 1 − γ • Optimal expected utility V 0 is given by V 0 = x γ γ H 1 − γ . 0 • This is where the fun starts. Tomas Bj¨ ork, 2007 17

  19. H 0 = E P � � γ L − β , β = T 1 − γ Recall � � � T � T α 2 σdW t − 1 α L T = exp − σ 2 dt . 2 0 0 Thus �� T � � T βα 2 βα σ dW t + 1 L − β = exp σ 2 dt . T 2 0 0 Define the P - martingale L 0 by �� t � � βα � � βα � 2 � t dW s − 1 L 0 t = exp ds σ 2 σ 0 0 We can then write � � � T βα 2 1 L − β = L 0 T exp (1 − γ ) σ 2 dt . T 2 0 Tomas Bj¨ ork, 2007 18

  20. � � �� � T βα 2 1 H 0 = E P L 0 T exp (1 − γ ) σ 2 dt , 2 0 Since L 0 is a martingale, it defines a change of measure t = dQ 0 L 0 dP , on F t , Thus � � �� � T βα 2 1 H 0 = E 0 exp (1 − γ ) σ 2 dt , 2 0 where L 0 has P -dynamics � βα � dL 0 t = L 0 dW t , t σ Tomas Bj¨ ork, 2007 19

  21. Results • Optimal wealth is given by X = x 1 − 1 − γ · L , T H 0 • H 0 is given by � � �� � T βα 2 1 H 0 = E 0 t exp dt , (1 − γ ) σ 2 2 0 t • L 0 = dQ 0 /dP has dynamics � βα t � dL 0 t = L 0 dW t , t σ t • Optimal expected utility V 0 is given by V 0 = x γ γ H 1 − γ . 0 This can in fact be extended Tomas Bj¨ ork, 2007 20

  22. Results in the observable case • The optimal wealth process is given by t = xH t 1 − X ⋆ 1 − γ · L , t H 0 • H t is given by �� � � � � T � βα 2 1 � H t = E 0 s exp ds � F t , � 2 (1 − γ ) σ 2 t s • The optimal expected utility process V t is given by t ) γ V t = ( X ⋆ H 1 − γ . t γ • L 0 = dQ 0 /dP has dynamics � βα t � dL 0 t = L 0 dW t , t σ t Tomas Bj¨ ork, 2007 21

  23. Furthermore • The optimal portfolio process is given by t (1 − γ ) + 1 α t σ H u ∗ t = σ 2 σ t H where dH t = µ H dt + σ H dW t Tomas Bj¨ ork, 2007 22

  24. Partially observable case Model: (Ω , F , P, F ) dS t = α t S t dt + S t σ t dW t , • F S t ⊆ F t • α is only F -adapted and thus not directly observable. • σ is F S t -adapted (WLOG). Wealth dynamics: dX t = u t α t X t dt + u t X t σ t dW t , Problem: E P [ U ( X T )] max u over F S -adapted portfolios. Tomas Bj¨ ork, 2007 23

  25. Recap on FKK filtering theory Given some filtration F : dY t = a t dt + dM t dZ T = b t dt + dW t Here all processes are F adapted and Y = signal process, Z = observation process, M = martingale w.r.t. F W = Wiener w.r.t. F We assume (for the moment) that M and W are independent . Problem: Compute (recursively) the filter estimate � � ˆ Y t | F Z Y t = E t Tomas Bj¨ ork, 2007 24

  26. The innovations process Recall F -dynamics of Z dZ t = b t dt + dW t Our best guess of b t is ˆ b t , so the genuinely new information should be dZ t − ˆ b t dt The innovations process ¯ W is defined by W t = dZ t − ˆ ¯ b t dt Theorem: The process ¯ W is F Z -Wiener. Thus the F Z -dynamics of Z are dZ t = � b t dt + d ¯ W t Tomas Bj¨ ork, 2007 25

  27. Back to the model dS t = α t S t dt + S t σ t dW t , Define Z by 1 dZ t = dS t S t σ t i.e. dZ t = α t dt + dW t σ t We then have dZ t = � α t dt + d ¯ W t σ t where ¯ W is F S -Wiener. Thus we have price dynamics α t S t dt + S t σ t d ¯ dS t = � W t , We are back in the completely observable case! Tomas Bj¨ ork, 2007 26

  28. The mathbfF S martingale measure ¯ Q is defined by d ¯ Q dP = ¯ on F S L t , t , (1) with L given by � � − ˆ α d ¯ L t = ¯ d ¯ L t W t . (2) σ Q 0 is defined by The measure ¯ d ¯ Q 0 dP = ¯ L 0 on F S t , t , L 0 given by with ¯ � ˆ � αβ d ¯ t = ¯ d ¯ L 0 L 0 W t . t σ Tomas Bj¨ ork, 2007 27

Recommend


More recommend