operator algebras and data hiding in topologically
play

Operator algebras and data hiding in topologically ordered systems - PowerPoint PPT Presentation

Operator algebras and data hiding in topologically ordered systems Leander Fiedler Pieter Naaijkens Tobias Osborne UC Davis & RWTH Aachen arXiv:1608.02618 9 October 2016 QMath 13 Topological order Topological phases


  1. Operator algebras and data hiding in topologically ordered systems Leander Fiedler Pieter Naaijkens Tobias Osborne UC Davis & RWTH Aachen arXiv:1608.02618 9 October 2016 
 QMath 13

  2. Topological order

  3. Topological phases

  4. Topological phases Quantum phase outside of Landau theory

  5. Topological phases Quantum phase outside of Landau theory ground space degeneracy

  6. Topological phases Quantum phase outside of Landau theory ground space degeneracy long range entanglement

  7. Topological phases Quantum phase outside of Landau theory ground space degeneracy long range entanglement anyonic excitations

  8. Topological phases Quantum phase outside of Landau theory ground space degeneracy long range entanglement anyonic excitations modular tensor category / TQFT

  9. Topological phases Quantum phase outside of Landau theory ground space degeneracy long range entanglement anyonic excitations modular tensor category / TQFT

  10. Modular tensor category Describes all properties of the anyons, e.g. fusion , braiding , charge conjugation , …

  11. Modular tensor category Describes all properties of the anyons, e.g. fusion , braiding , charge conjugation , … Irreducible objects anyons ρ i ⇔

  12. Modular tensor category Describes all properties of the anyons, e.g. fusion , braiding , charge conjugation , … Irreducible objects anyons ρ i ⇔ Quantum dimension D 2 = X d ( ρ i ) 2 i

  13. Topological entanglement entropy Area law for top. ordered states: S Λ = α | ∂ Λ | − γ + · · · Kitaev & Preskill (06), Levin & Wen (06)

  14. Topological entanglement entropy Area law for top. ordered states: S Λ = α | ∂ Λ | − γ + · · · Universal constant: γ = log D Kitaev & Preskill (06), Levin & Wen (06)

  15. Technical framework

  16. k · k [ Quasi-local algebra A = A ( Λ ) Λ O A ( Λ ) = M d ( C ) x ∈ Λ

  17. and local Hamiltonians H Λ ∈ A ( Λ ) O A ( Λ ) = M d ( C ) x ∈ Λ

  18. ground state representation π 0 O A ( Λ ) = M d ( C ) x ∈ Λ

  19. Example: toric code is a single excitation state ω 0 � ρ

  20. Example: toric code is a single excitation state ω 0 � ρ describes π 0 � ρ observables in presence of background charge

  21. Quantum dimension

  22. R A = π 0 ( A ( A )) 00

  23. R A = π 0 ( A ( A )) 00 R B

  24. R A = π 0 ( A ( A )) 00 R B R AB = R A ∨ R B

  25. b R AB = π 0 ( A (( A ∪ B ) c )) 0

  26. Locality: R AB ⊂ b R AB

  27. Locality: R AB ⊂ b R AB but: R AB $ b R AB

  28. Weak-operator limit is in b R AB

  29. Jones-Kosaki-Longo index [ b R AB : R AB ] Weak-operator limit is in b R AB

  30. Theorem The number of excitation types is bounded by [ b µ π 0 = sup R AB : R AB ] A ∪ B If all excitations have conjugates, is equal µ π 0 to the total quantum dimension . PN, J. Math. Phys. ’13 
 Kawahigashi, Longo & Müger, Commun. Math. Phys. ’01

  31. Data hiding

  32. A data hiding task Bob Alice Eve

  33. A data hiding task Bob Alice Eve b Operations in are invisible to Eve R AB

  34. A data hiding task Bob Alice Eve and can be used to create charge pairs

  35. A data hiding task Similar conclusion: TEE as a secret sharing capacity Kato, Furrer & Murao, Phys. Rev. A., ’16

  36. Distinguishing states Alice prepares a mixed state :

  37. Distinguishing states Alice prepares a mixed state : …and sends it to Bob

  38. Distinguishing states Alice prepares a mixed state : …and sends it to Bob Can Bob recover ?

  39. Holevo 𝜓 quantity In general not exactly:

  40. Holevo 𝜓 quantity In general not exactly:

  41. Holevo 𝜓 quantity In general not exactly: Generalisation of Shannon information

  42. Holevo 𝜓 quantity In general not exactly: Generalisation of Shannon information

  43. Optimal strategy Want to compare and :

  44. Optimal strategy Want to compare and :

  45. Optimal strategy Want to compare and :

  46. Optimal strategy Want to compare and : Shirokov & Holevo, arXiv:1608.02203

  47. A quantum channel For finite index inclusion

  48. A quantum channel For finite index inclusion quantum channel, describes the restriction of operations

  49. Quantum dimension and entropy Hiai, J. Operator Theory, ’90; J. Math. Soc. Japan, ‘91

  50. Quantum dimension and entropy Hiai, J. Operator Theory, ’90; J. Math. Soc. Japan, ‘91 gives an information-theoretic interpretation to quantum dimension

  51. Quantum dimension and entropy Hiai, J. Operator Theory, ’90; J. Math. Soc. Japan, ‘91 gives an information-theoretic interpretation to quantum dimension Completely different methods from Kato/Furrer/ Murao, PRA 93 , 022317 (2016)

  52. Some remarks

  53. Some remarks Only classical information can be stored

  54. Some remarks Only classical information can be stored Different methods compared to Kato et al.

  55. Some remarks Only classical information can be stored Different methods compared to Kato et al. No finite dimensional analogue to index

  56. Some remarks Only classical information can be stored Different methods compared to Kato et al. No finite dimensional analogue to index Can use powerful methods from mathematics

  57. Some remarks Only classical information can be stored Different methods compared to Kato et al. No finite dimensional analogue to index Can use powerful methods from mathematics Right framework to study stability?

Recommend


More recommend