on the replica approach for statistical mechanics of
play

On the replica approach for statistical mechanics of random system - PowerPoint PPT Presentation

On the replica approach for statistical mechanics of random system Giorgio Parisi Spin glasses in the infinite range limit (the Sherrington Kirkpatrick model). The computation of the free energy in the SK model (mean field


  1. On the replica approach for statistical mechanics of random system Giorgio Parisi • Spin glasses in the infinite range limit (the Sherrington Kirkpatrick model). • The computation of the free energy in the SK model (mean field approximation). • The heuristic approach base on replicas. • A first step toward a di ff erent approach. • Some interesting conjectures.

  2. The simplest Ising spin glass (SK) has the following random Hamiltonian: � H J [ ⃗ σ ] = J i,k σ ( i ) σ ( k ) i,k =1 ,N σ i = ± 1, i = 1 , N . The J are random (e.g. Gaussian distributed with zero average). E [ J 2 i,k = N − 1 i,k ] ≡ J 2 E [ J i,k ] ≡ J i,k = 0 , Equivalently H J [ ⃗ σ 1 ] is a random Gaussian function: � H J [ ⃗ σ 1 ] = 0; H J [ ⃗ σ 1 ] H J [ ⃗ σ 2 ] = N ( ⃗ σ 1 , ⃗ σ 2 ) ≡ N σ 1 ( i ) σ 2 ( i ) i The probability distribution of the spectrum of J is known: the Dyson semicircle law.

  3. Partition function: � � 2 N terms � � Z J = exp( − β H J [ ⃗ σ ]) H J [ ⃗ σ ] = J i,k σ ( i ) σ ( k ) i,k =1 ,N σ ⃗ Free energy: β Nf N J ( β ) = − log( Z J ) We want to compute ˜ N →∞ f N f ( β ) = lim J ( β ) The overline represent the average over the J ’s.

  4. Which is the result for the value of the free energy? We start with a function q ( x ) defined in the interval 0 ≤ x ≤ 1. The function g q ( x, h ) is defined in the strip 0 ≤ x ≤ 1, −∞ < h < ∞ . Boundary condition: g q (1 , h ) = log(cosh( β h )); the function g q ( x, h ) satisfies the following q ( x ) dependent antiparabolic equation: � � 2 � ∂ 2 g q ( x, h ) � ∂ g q ( x, h ) ∂ g q ( x, h ) = − dq + x ∂ h 2 ∂ x dx ∂ h � 1 F [ q ] = 1 1 − q ( x ) 2 � � dx − g q (0 , 0) 2 β 0 ˜ f ( β ) = max q ( x ) F [ q ]

  5. This formula was found using replica approach. We need to compute − β Nf ( β , N ) ≡ ln( Z )( β , N ) while it is simple to compute for integer n : � � Z ( β , N ) n log f ( n ; β , N ) = − n → 0 f ( n ; β , N ) = f . lim β Nn Nicola d’Oresme trick (1353). Starting form the definition of A n , A n − 1 √ A 1 / 2 = A, ln( A ) = lim n n → 0

  6. After some algebra and Gaussian integrations we find the exact formula � exp( − β nNf ( n ; β , N )) = dQ exp( − β NnF [ Q ]) ⎛ �⎞ �� nF [ Q ] = − 1 2 β Tr Q 2 + β − 1 log ⎝� exp Q a,b σ a σ b ⎠ { σ } a,b The matrix Q is symmetric, zero on the diagonal ( Q a.a = 0). We have n variables σ a that takes the value ± 1. The integral is done on n ( n − 1) variables. 2

  7. Symmetries The symmetry group is S n . If π is a permutation ( Q π ) a,b = Q π ( a ) , π ( b ) F [ Q π ] = F [ Q ] The proof is trivial: ⎛ �⎞ �� nF [ Q ] = − 1 2 β Tr Q 2 + β − 1 log ⎝� exp Q a,b σ a σ b ⎠ a,b { σ } �� � �� � �� � � � Q π exp = exp Q a,b σ π ( a ) σ π ( b ) = exp Q a,b σ a,b σ a σ b a,b a,b a,b { σ } { σ } { σ }

  8. Point of maximum for N → ∞ . � exp( − β nNf ( n, β , N )) = dQ exp( − β NnF [ Q ]) N →∞ f ( n, β , N ) = F [ Q ∗ ] = min f ( n, β ) ≡ lim Q F [ Q ] We can compute f ( n ) on the integers: the maximum is at Q ∗ a,b = q , ∀ a, b , i.e. the only matrix left invariant by the whole permutation group. We compute everything for integer n and we perform an analytic continuation at n = 0. This gives a wrong result at high β . The function f ( n ) must have a singularity at 0 < n < 1: e.g. � 5 f ( n ) = 0 for n > 1 � n − 1 for n < 1 2; f ( n ) = 2 2

  9. Putting the finger on the origin of troubles. If F [ Q ] has minimum at Q ∗ we must have ∂ 2 F [ Q ] ∂ F [ Q ] = 0 H ≥ 0 H a,b ; cd ≡ ∂ Q a,b ∂ Q a,b ∂ Q c,d The non-negativity of the Hessian ( H ≥ 0) is supposed to be equivalent (also for non-integer n ) to: The spectrum of H is non-negative. At high β the analytic continuation of the spectrum of H acquire a negative part for 0 < n < n ∗ ( β ): the de Almeida Touless instability.

  10. A bold approach: we do the maximum point approximation at n = 0! This lead to a strange mathematics: one introduces a is n × n matrix Q and the symmetry group is S n : eventually n → 0. If π is a permutation ( Q π ) a,b = Q π ( a ) , π ( b ) F [ Q π ] = F [ Q ] F [ Q ] has a minimum at Q ∗ . We call S ∗ the subgroup of S n that leaves Q ∗ invariant i.e. the stabilizer subgroup (the little group). S n ⊃ S ∗ If S ∗ ̸ = S n the (replica) simmetry group is ”spontaneously broken”.

  11. Explicit construction non-symmetric Q ∗ Q ∗ a,b = q 1 if I ( a/m ) = I ( b/m ) Q ∗ a,b = q 0 if I ( a/m ) ̸ = I ( b/m ). Q a,a = 0. i.e. n obiects are divided into n/m classes of m elements. The little group corresponding to Q ∗ is S ∗ = S n/m ⊗ ( S m ) n/m . When n → 0, S n/m → S 0 so that S 0 ⊃ S 0 . S 0 is an infinite group!

  12. The new estimate is (all functions depend also on β ) f RSB = max q 1 ,q 0 ,m f ( q 1 , q 0 , m ) 1 The minimum is at m ∗ with 0 < m ∗ < 1. The old result f RSB is given by 0 f RSB = max f ( q, q, m ) f ( q, q, m ) does not depend on m 0 q In a recursive way ( S 0 ⊃ S 0 ) we can define f RSB ( β ) in such a way that k f RSB ≤ f RSB ≤ f RSB . . . ≤ f RSB . . . ≤ f RSB k →∞ f RSB ≡ lim 0 1 2 k k ∞ In 1979 it was conjectured that f RSB = f . In 2002 Guerra proved that ∞ f RSB ≤ f ∀ k . Less than one year later Talagrand twisted Guerra proof k to prove that f ≤ sup k f RSB . Hence k f RSB ≤ f ≤ f RSB f RSB = f → ∞ ∞ ∞

  13. Can the replica derivation sligtly modified in such a way that it makes sense? It should not involve sets whose cardinality is a non-integer real number !!! Here I present a computation of ˜ f ≡ max q,m f RSB ( q, 0 , m ) that 1 correspond in replicas to Q ∗ a,b = q if I ( a/m ) = I ( b/m ) Q ∗ a,b = 0 if I ( a/m ) ̸ = I ( b/m ). for non-integer m (following Campellone, G.P. and Virasoro, inspired from Derrida). I will start with writing some identities. I will exchange limits with integral, I will treat non convergent asymptotis series as convergent, but these are minor sins! The cardinality of sets will always be an integer number.

  14. � ∞ dt � � ln Z N = exp( − t ) − exp( − tZ N ) . t 0 Let us define 1 � k !( − t ) k Z k exp( − φ ( t, N )) ≡ exp( − tZ N ) = N . k =0 , ∞ Z k � N = dQ exp( − NF ( k, Q )), the integral is done over k × k matrices. At the end of the game we have to evaluate exp( − φ ( t, N )) for very large t . We need a very good control of Z k N : Z k N ≈ exp( − NF ( k, Q ∗ )) F ( k, Q ∗ ) ≡ min Q F ( k, Q ) gives the wrong replica symmetric result!

  15. A di ff erent approximation could be to sum over all the critical points: � ∂ F ( k, Q ) � � Z k exp( − NF ( k, Q ∗ j )) = 0 N ≈ � ∂ Q a,b � Q ∗ j j All critical poins are beyond my command. I will make an arbitrary selection: We partition the set of k elements into l sets of size m i , where � l i =1 m i = k . (Here l is the total number of blocks of the matrix.) The o ff diagonal elements, i.e. Q ab , have a constant value q i if a and b belong to the same set. Q ab is zero if a and b do not belong to the same set. If we we take all the m i = m and q i = q we recover the replica computation for q 1 = q and q 0 = 0. Here we stick to integer m i !

  16. In this way each stationary point of this kind depends is characterized (apart from permutations) the size of the blocks m i and by the values of q i that are a function of the m i . After some algebra we get ∞ ( − t ) m � − φ ( t, N ) = exp( mNf ( m )) . m ! m =1 When N → ∞ we need to evaluate the previous formula when t goes to to ∞ at constant y = ln t/N : t is very large, i.e. O (exp( yN )). We can transform the previous sum into an integral in the complex plane − φ ( t, N ) = 1 � dm exp( N ( my + mf ( m ))) . 2 i Γ [1 + m ] sin[ π ] C where y = ln t/N and C is an appropriate integration path in the complex plane and crosses the real line for 0 < x < 1.

  17. We deform the path C to a new path going from − i ∞ to + i ∞ crossing the real line for 0 < m < 1. We look for a saddle point in the complex plane. The equation for the saddle point (i.e. m sp ) is f ( m sp ( y )) + m sp ( y ) f ′ ( m sp ( y )) + y = 0 . Let us assume, for simplicity that 0 < m sp < 1. In this case we have at the leading order φ ( t, N ) ≈ exp ( Nm sp ( y )( y + f ( m sp ( y ))) . where f ′ ( m sp ( y )) = 0 , After computing the integral on t and after some simple estimates we recover the result of the replica approach.

  18. Crucial points! ∞ ( − t ) m exp( mNf ( m )) = 1 dm exp( N ( my + mf ( m ))) � � − φ ( t, N ) = . m ! 2 i Γ [1 + m ] sin[ π ] C m =1 • We have a function f ( m ) that we can write in an explicit way and we continue it from integer to non-integer values. • We use this analytic continuation to write the result as a complex contour integral. • We estimate the integral with the saddle point method. • In a simple case, we can do the computation and we obtain the replica result.

Recommend


More recommend