. . . . . . . . . . . . . . On the Polarization of Rényi Entropy Mengfan Zheng Based on joint work with Ling Liu and Cong Ling Dept. of Electrical and Electronic Engineering Imperial College London m.zheng@imperial.ac.uk 8 May, 2019 M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 / 57
. . . . . . . . . . . . . . . Motivation – measure information in the average sense – work well in communication theory – insuffjcient in some other areas such as cryptography information measures M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . 2 / 57 • Shannon entropy/Mutual information • Rényi entropy: more general, widely adopted in cryptography, etc. • Polarization/polar codes: powerful tool, well-studied under Shannon’s • Polarization of Rényi entropy not well understood yet
. 2 . . . . . . . Outline 1 Preliminaries Shannon’s Information Measures From Shannon to Rényi Introduction . Channel Coding Polar Codes 3 Polarization of Conditional Rényi Entropy Polarization Result Proof and Discussion 4 Possible Applications in Cryptography 5 Open Problems M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 / 57
. 1 . . . . . . . . . . Preliminaries . 2 Introduction 3 Polarization of Conditional Rényi Entropy 4 Possible Applications in Cryptography 5 Open Problems M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 / 57
. . . . . . . . . . . . . . . Notations 0 1 1 . M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . 5 / 57 . . . . . . . . . . . ( X , Y ) ∼ P X , Y [ N ] : index set { 1 , 2 , ..., N } . Vectors: X or X a : b ≜ { X a , X a + 1 , ..., X b } where a ≤ b . X A ( A ⊂ [ N ] ): the subvector { X i : i ∈ A} of X 1 : N . G N = B N F ⊗ n : the generator matrix of polar codes, where N = 2 n , [ 1 ] B N is the bit-reversal matrix, and F =
. Shannon’s Information Measures . . . . . . . . . 1 Preliminaries From Shannon to Rényi . 2 Introduction 3 Polarization of Conditional Rényi Entropy 4 Possible Applications in Cryptography 5 Open Problems M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 / 57
. . . . . . . . . . . . . . Shannon Entropy (Shannon) Entropy: 1 Joint entropy: Conditional entropy: Chain rule: M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . 7 / 57 . . . ∑ H ( X ) = E P log P ( X ) = − P ( x ) log P ( x ) x ∈X ∑ ∑ H ( X , Y ) = − P ( x , y ) log P ( y , x ) x ∈X y ∈Y ∑ ∑ ∑ H ( Y | X ) = P ( x ) H ( Y | X = x ) = − P ( x , y ) log P ( y | x ) x ∈X x ∈X y ∈Y H ( X , Y ) = H ( X ) + H ( Y | X )
. . . . . . . . . . . . . . . . Relative Entropy and Mutual Information The relative entropy or Kullback–Leibler distance between two Mutual information: the average information that Y gives about X M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . 8 / 57 . . . . . . . . . . . probability mass functions P ( x ) and Q ( x ) : P ( x ) log P ( x ) Q ( x ) = E P log P ( x ) ∑ D ( P || Q ) = Q ( x ) x ∈X P ( x , y ) log P ( x , y ) ∑ ∑ I ( X ; Y ) = P ( x ) P ( y ) = D ( P ( x , y ) || P ( x ) P ( y )) x ∈X y ∈Y
. Shannon’s Information Measures . . . . . . . . . 1 Preliminaries From Shannon to Rényi . 2 Introduction 3 Polarization of Conditional Rényi Entropy 4 Possible Applications in Cryptography 5 Open Problems M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 / 57
. . . . . . . . . . . . . . . From Shannon to Rényi Defjnition (Rényi Entropy [Rényi’61]) 1 (1) Three other special cases of the Rényi entropy: M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . 10 / 57 . . . . . . . . . . . The Rényi entropy of a random variable X ∈ X of order α is defjned as ∑ P X ( x ) α . H α ( X ) = 1 − α log x ∈X As α → 1, the Rényi entropy reduces to the Shannon entropy. Max-entropy : H 0 ( X ) = log |X| Min-entropy : H ∞ ( X ) = min i ( − log p i ) = − log max i p i Collision entropy : H 2 ( X ) = − log ∑ n i = − log P ( X = Y ) i = 1 p 2
. . . . . . . . . . . . . . . . . Rényi Entropy M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . 11 / 57 Figure: Rényi entropies of a Bern ( p ) random variable.
. . . . . . . . . . . . . . Rényi Divergence Defjnition (Rényi divergence [Rényi’61]) defjned as 1 (2) divergence. M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . 12 / 57 . . . . The Rényi divergence of order α of P from another distribution Q on X is ∑ P ( x ) α Q ( x ) 1 − α . D α ( P || Q ) = α − 1 log x ∈X Also, as α → 1, the Rényi divergence reduces to the Kullback–Leibler
. . . . . . . . . . . . Conditional Rényi Entropy . Unlike the conditional Shannon entropy, there is no generally accepted defjnition of the conditional Rényi entropy yet. Defjnition (Conditional Rényi Entropy [Jizba-Arimitsu’04]) 1 (3) This type of Rényi conditional entropy satisfjes the chain rule: (4) M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . 13 / 57 . . . . The conditional Rényi entropy of order α of X given Y is defjned as { x , y }∈X×Y P X , Y ( x , y ) α ∑ H α ( X | Y ) = 1 − α log . ∑ y ∈Y P Y ( y ) α H α ( X | Y ) + H α ( Y ) = H α ( X , Y ) .
. . . . . . . . . . . . . . . . Conditional Rényi Entropy (Cont.) Defjnition (Conditional Rényi Entropy [Cachin’97]) (5) M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . 14 / 57 . . . . The conditional Rényi Entropy of order α of X given Y is defjned as ∑ H ′ α ( X | Y ) = P Y ( y ) H α ( X | y ) . y ∈Y
. . . . . . . . . . . . Conditional Rényi Entropy (Cont.) . Defjnition (Conditional Rényi Entropy [Arimoto’77]) H A (6) Defjnition (Conditional Rényi Entropy [Hayashi’11]) H H 1 (7) M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . 15 / 57 . . . . . . . . . . . . The conditional Rényi Entropy of order α of X given Y is defjned as α [ ∑ P X | Y ( x | y ) α ] 1 ∑ α α ( X | Y ) = 1 − α log P Y ( y ) y ∈Y x ∈X The conditional Rényi Entropy of order α of X given Y is defjned as ∑ ∑ P X | Y ( x | y ) α α ( X | Y ) = 1 − α log P Y ( y ) y ∈Y x ∈X
. 1 . . . . . . . . . . Preliminaries . 2 Introduction 3 Polarization of Conditional Rényi Entropy 4 Possible Applications in Cryptography 5 Open Problems M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 / 57
. . . . . . . . . . . . . . . . Model of Digital Communication – Compresses the data to remove redundancy – Adds redundancy/structure to protect against channel errors M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . 17 / 57 • Source Coding • Channel Coding
. 2 . . . . . . . . . 1 Preliminaries Introduction . Channel Coding Polar Codes 3 Polarization of Conditional Rényi Entropy 4 Possible Applications in Cryptography 5 Open Problems M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 / 57
. . . . . . . . . . . . . . . . . The Channel Coding Problem M. Zheng (ICL) On the Polarization of Rényi Entropy 8 May, 2019 . . . . . . . . . . . . . . . . . . . . . . . 19 / 57 • m ∈ M = { 1 , 2 , ..., M } • Input X ∈ X , output Y ∈ Y • Memoryless: P ( y n | x 1 : n , y 1 : n − 1 ) = P ( y n | x n ) • DMC = Discrete Memoryless Channel
Recommend
More recommend