on the correlation numbers in minimal gravity and matrix
play

On the correlation numbers in Minimal Gravity and Matrix Models - PowerPoint PPT Presentation

On the correlation numbers in Minimal Gravity and Matrix Models A.Belavin, A.Zamolodchikov Two approaches to 2D quantum geometry Continuous approach Discret approach Liouville Gravity Matrix Models Impressive body of


  1. On the correlation numbers in Minimal Gravity and Matrix Models A.Belavin, A.Zamolodchikov

  2. Two approaches to 2D quantum geometry Continuous approach Discret approach ↓ ↓ ”Liouville Gravity” ”Matrix Models” Impressive body of evidence that the two describe the same reality: • Operators O LG and O MM have identical scale dimensions k k • Some correlation numbers coincide: � O LG ...O LG � = � O MM ...O MM � 1 n 1 n But with ”naive” identification many correlation numbers are not in agreement. Resolution [ Moore, Seiberg, Staudacher, 1991 ]: Resonance re- lations : [ O k ] = [ τ k 1 ][ O k 2 ] ↓ + B k 1 k 2 O MM = O LG τ k 1 O LG Umbiguity k k k 2 k • In many cases the disagreement can be fixed by adjusting the parameters (e.g. B k 1 k 2 above). k 1

  3. • This work: Trying to find exact map for special class of models: ”p − criticality” in ”Minimal Gravity” MG 2 / 2 p +1 ↔ One − Matrix Model ◦ The problem is rather ”rigid” (more constraints then the pa- rameters). ◦ Nonetheless, the map exists up to the level of four point corr. numbers. ◦ The resulting 1-, 2-, 3-, and 4-point correlation numbers are in perfect agreement. 2

  4. 1. Minimal Gravity 1.1. Quantum Geometry � � D [ g ] D [ φ ] e − S [ g,φ ] topologies g ( x ) - Riemannian metric on 2D manifold M (assume sphere), φ - ”matter” fields Invariant correlation functions (”correlation numbers”) : � O k N e − S [ g,φ ] D [ g, φ ] O k N � = Z − 1 � ˜ O k 1 ... ˜ O k 1 ... ˜ ˜ with � ˜ O k = M O k ( x ) dµ g ( x ) O k ( x ) - local fields (built from φ and g ). Generating function : { τ } = { τ 1 , ..., τ n } � D [ g, φ ] e − S τ [ g,φ ] , W ( { τ } ) = Z ( { τ } ) /Z ( { 0 } ) , Z ( { τ } ) = � τ k ˜ S τ [ g, φ ] = S 0 [ g, φ ] + O k k 3

  5. so that � O k N � = ∂ N W ( { τ } ) � � ˜ O k 1 ... ˜ � � ∂τ k 1 ...∂τ k N � τ =0 The parameters { τ } may be regarded as the coordinates in the ”theory space” Σ.

  6. 1.2. Conformal Matter, and Liouville Gravity = − c g µν T matter 12 R µν Conformal Gauge g µν = e 2 bϕ ˆ g µν : Decoupling ⇒ S [ g, φ ] → S L [ ϕ ] + S Ghost [ B, C ] + S Matter [ φ ] with � � � S L [ φ ] = 1 � g µν ∂ µ ϕ∂ ν ϕ + Q ˆ R ϕ + 4 πµ e 2 b ϕ d 2 x , g ˆ ˆ 4 π � S Ghost [ B, C ] = 1 � g B µν ∇ µ C ν d 2 x , ˆ 2 π � � g µν B µν = 0 B µν = B νµ , ˆ , 26 − c = 1 + 6 Q 2 Q = b + 1 /b . ( S Matter [ φ ] is conformally invariant, with the central charge c ). 4

  7. Correlation numbers � ˜ O k 1 ... ˜ O k N � with � V k ( x ) Φ k ( x ) d 2 x ˜ O k = Φ k ( x ) - (spinless) primary fields of the matter CFT, with the conformal dimensions (∆ k , ∆ k ) V k ( x ) - ”gravitational dressings”, V k ( x ) = e 2 a k ϕ ( x ) , a k ( Q − a k ) + ∆ k = 1 Gravitational dimensions of ˜ O k control the scale dependence of the corr. functions: δ k = − a k O k ∼ µ δ k , ˜ b 1.3. Correlation numbers O k n � = | ( x 1 − x 2 )( x 2 − x 3 )( x 3 − x 1 ) | 2 × � ˜ O k 1 ... ˜ � d 2 x 4 ...d 2 x n � O k 1 ( x 1 ) O k 2 ( x 2 ) O k 3 ( x 3 ) O k 4 ( x 4 ) ...O k n ( x n ) � � �� � ↓ � V k 1 ( x 1 ) ...V k n ( x n ) � Liouville � Φ k 1 ( x 1 ) ... Φ k n ( x n ) � Matter 5

  8. • The Liouville correlation functions are expressed in terms of the ”Conformal Blocks”, e.g. � V k 1 ( x 1 ) ...V k 4 ( x 4 ) � Liouville = � dP � � � � 4 π C L a k 1 , a k 2 , Q/ 2 + iP C L Q/ 2 − iP, a k 3 , a k 4 × |F ∆( P ) (1 − ∆ i | x i ) | 2 with ∆( P ) = Q 2 / 4 + P 2 , and the ”Liouville Structure Constants” 3 Υ b ( b ) Υ b (2 a i ) � ( Q − a ) /b � � πµ γ ( b 2 ) C L ( a 1 , a 2 , a 3 ) = Υ b ( a − Q ) Υ b ( a − a i ) i =1 where a = a 1 + a 2 + a 3 , � ∞ � � ( Q − 2 x ) 2 e − 2 t − sinh 2 (( Q/ 2 − x ) t ) dt log Υ b ( x ) = 4 sinh( bt ) sinh( t/b ) t 0 • Integration over the moduli x 4 , ..., x n is to be performed. 6

  9. 1.4. Matter CFT: ”Minimal Models” c = 1 − 6 ( p − q ) 2 M p/q pq Finite number of primary fields Φ ( n,m ) ( n = 1 , ..., p − 1 , m = 1 , ..., q − 1 , n ≤ m ) , with (in principle) computable correlation functions, e.g. � Φ ( n 1 ,m 1 ) ( x 1 ) ... Φ ( n 4 ,m 4 ) ( x 4 ) � MM = � C ( n,m ) ( n 1 ,m 1 )( n 2 ,m 2 ) C ( n,m ) ( n 3 ,m 3 )( n 4 ,m 4 ) |F ( n,m ) (∆ i | x ) | 2 ( n,m ) Fusion rules: N M � � Φ ( n 1 ,m 1 ) Φ ( n 2 ,m 2 ) = [Φ ( n,m ) ] , n = | n 1 − n 2 | +1 m = | m 1 − m 2 | +1 with N = min( n 1 + n 2 − 1 , 2 p − n 1 − n 2 − 1) , M = min( m 1 + m 2 − 1 , 2 q − m 1 − m 2 − 1) 7

  10. 1.5. ”Yang-Lee series” of the Minimal Models M 2 / 2 p +1 • M 2 / 2 p +1 has p primary fields Φ k ≡ Φ (1 ,k +1) , k = 0 , 1 , ..., p − 1 ( p, p + 1 , ..., 2 p − 1) Fusion rules k 1 + k 2 � [Φ k 1 ][Φ k 2 ] = [Φ k ] , [Φ k ] = [Φ 2 p − k − 1 ] k = | k 1 − k 2 | : 2 � + for even k ”Parity” : Φ k − for odd k Φ k = Φ 2 p − k − 1 → ”Parity violation” • Correlation functions: � Φ k � = δ k, 0 , � Φ k Φ k ′ � ∼ δ k,k ′ � Φ k 1 Φ k 2 Φ k 3 � = 0 � k 1 + k 2 < k 3 , etc , for k 1 + k 2 + k 3 even if k 1 + k 2 + k 3 < 2 p − 1 for k 1 + k 2 + k 3 odd 8

  11. � Φ k 1 ... Φ k n � = 0 � k 1 + ... + k n − 1 < k n , for k 1 + ... + k n even if k 1 + ... + k n < 2 p − 1 for k 1 + ... + k n odd • Interpretations: M 2 / 3 - ”empty” theory (has only identity operator) M 2 / 5 - Yang-Lee edge criticality [ Cardy, 1985 ] M 2 / 2 p +1 - Yang-Lee multi-criticality?

  12. 1.6. Minimal gravity MG p/q : M p/q coupled to the Liouville Gravity • Early computations of the correlation numbers: [ Goulian & Li, 1991; Di Francesco & Kutasov, 1991; ... ] • Systematic approach [ Alexei Zamolodchikov, 2004; Belavin &Al.Zamolodchikov, 2006 ]: ”Higher Liouville Equations of Motion” � � moduli [ ... ] = moduli [total derivative] → Boundary terms • Results for MG 2 / 2 p +1 : � V k ( x ) Φ k ( x ) d 2 x , V k ( x ) = e ( k +2) b ϕ ( x ) ˜ O k = with � b = 2 / (2 p + 1) 9

  13. ⋆ One-point correlation numbers � O k � = 0 , ⋆⋆ Two-point numbers 1 O k ′ � = δ kk ′ 2 p − 2 k − 1 Leg 2 � ˜ O k ˜ L ( k ) , Z p with Z p = [(2 p − 1)(2 p + 1)(2 p + 3)] − 1 and �� − k +2 � � � � � 2 p +1 � π 2 γ 2 2 � 1 / 2 2 � πµ γ γ 2 p +1 2 p +1 2 Leg L ( k ) = � 2 p − 2 k − 1 � � 2 p − 2 k − 1 � 2 p − 1 γ γ 2 p +1 2 ⋆ ⋆ ⋆ Three-point correlation numbers: 3 O k 3 � = N k 1 k 2 k 3 � � ˜ O k 1 ˜ O k 2 ˜ Leg L ( k i ) Z p i =1 where N k 1 k 2 k 3 enforces the ”fusion rules” � 1 if the fusion rules of M 2 / 2 p +1 are satisfied N k 1 k 2 k 3 = 0 otherwise 10

  14. ⋆ ⋆ ⋆⋆ Four-point correlation numbers: 4 O k 4 � = Σ k 1 k 2 k 3 k 4 � � ˜ O k 1 ˜ O k 2 ˜ O k 3 ˜ Leg L ( k i ) Z p i =1 k 1 4 � � Σ k 1 ...k 4 = ( k 1 + 1)( p + k 1 + 3 / 2) − | p − 1 / 2 − k i − s | i =2 s = − k 1 : 2 Applies when the number of conformal blocks in � Φ k 1 ... Φ k 4 � is exactly k 1 . This holds for instance if and k 1 + k 4 ≤ k 2 + k 3 . k 1 ≤ k 2 ≤ k 3 ≤ k 4 , k 1 4 4 � p − 1 − 2 p +3 � � � � � � � ˜ � � 2 − k i − s � = ( k 1 +1) 2+ k i + F p ( k 1 + k i ) , s = − k 1 : 2 i =1 i =2 � F p ( k ) = ( p − k − 1)( p − k − 2) 1 for k ≥ 0 ˜ Θ( k − p ) , Θ( k ) = 2 0 for k < 0 ⋆...⋆ Higher-point functions are (in principle) computable [ Belavin, Al.Zamolodchikov, unpublished ]

  15. • Generating function: { τ } = { τ 1 , τ 2 , ..., τ p − 1 } p − 1 � � � � � τ i ˜ W MG ( µ, { τ } ) = exp − O i i =1 MG 2 / 2 p +1 The cosmological constant µ may be treated as µ = τ 0 � e 2 bϕ ( x ) d 2 x S [ MG ] = ... + µ + ... � �� � � V 0 ( x ) Φ 0 ( x ) d 2 x , ˜ O 0 = Φ 0 = I Dimensions: k +2 τ k ∼ µ , k = 0 , 1 , ..., p − 1 2 By the definition � O k n � = ∂ n W MG ( µ, { τ i } ) � � ˜ O k 1 ... ˜ � { τ i } = { τ 1 , ..., τ n } , � ∂τ k 1 ...∂τ k n � { τ i } =0 11

  16. 2. Matrix Models Continuous (scaling) limit of the ensemble of planar graphs � �� � ↓ Quantum Geometry 2.1. One-matrix Model The planar graphs = Feynmann dia- grams associated with the perturbative evaluation of the matrix integral � � 2 M 2 − � � 1 αn n ! M n dM e − N tr n =3 Z = log M - Hermitian N × N matrix, N being the device for sorting out the topologies Z = N 2 Z 0 + Z 1 + ... + N 2 − 2 g Z g + ... Each term Z g generates discretized surfaces, of the topology g , made of triangles and higher polygons, with the weights deter- mined by α i . • We concentrate on g = 0 (sphere) Σ -space of the ”poten- n =3 α n tials” V ( M ) = � n ! M n . 12

  17. • The sum of the planar graphs exhibits critical behavior , in the vicinities of certain critical hyper-surfaces in Σ: ... ⊂ Σ p ⊂ ... ⊂ Σ 2 ⊂ Σ 1 ⊂ Σ ↑ ” p -criticality”

Recommend


More recommend