On The Complexity Of Computing Gröbner Bases For Quasi-Homogeneous Systems Jean-Charles Faugère 1 Mohab Safey El Din 1 , 2 Thibaut Verron 1 , 3 1 Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe P OL S YS Laboratoire d’Informatique de Paris 6, UMR CNRS 7606 2 Institut Universitaire de France 3 École Normale Supérieure, Paris, France June 29, 2013
Motivation Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013) 7871 53362 26257 25203 19817 9843 11204 18574 50900 128 23117 29737 3752 25459 e 16 e 8 e 7 e 6 e 2 e 5 e 3 e 4 e 4 e 3 e 5 0 = 14294 + 36407 ˜ 1 + 3037 ˜ 1 ˜ e 2 + 28918 ˜ 1 ˜ 2 + 52187 ˜ 1 ˜ 2 + 27006 ˜ 1 ˜ 2 + 58263 ˜ 1 ˜ 5 2 32775 58813 38424 29298 36574 64195 17964 20289 20802 41456 56353 46683 63059 57146 46217 63811 40524 4522 27518 5478 50777 6881 1728 32176 e 3 + 2067 smaller monomials e 2 e 6 e 7 e 8 e 7 e 6 ˜ 1 ˜ e 1 ˜ ˜ ˜ ˜ 1 ˜ ˜ 1 ˜ e 2 ˜ + 45631 2 + 48809 2 + 1238 2 + 18652 e 3 + 31159 13171 1858 8056 54885 28424 42548 55751 54831 8241 5276
Motivation Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013) 7871 53362 26257 25203 19817 9843 11204 18574 50900 128 23117 29737 3752 25459 e 16 e 8 e 7 e 6 e 2 e 5 e 3 e 4 e 4 e 3 e 5 0 = 14294 + 36407 ˜ 1 + 3037 ˜ 1 ˜ e 2 + 28918 ˜ 1 ˜ 2 + 52187 ˜ 1 ˜ 2 + 27006 ˜ 1 ˜ 2 + 58263 ˜ 1 ˜ 5 2 32775 58813 38424 29298 36574 64195 17964 20289 20802 41456 56353 46683 63059 57146 46217 63811 40524 4522 27518 5478 50777 6881 1728 32176 e 3 + 2067 smaller monomials e 2 e 6 e 7 e 8 e 7 e 6 ˜ 1 ˜ e 1 ˜ ˜ ˜ ˜ 1 ˜ ˜ 1 ˜ e 2 ˜ + 45631 2 + 48809 2 + 1238 2 + 18652 e 3 + 31159 13171 1858 8056 54885 28424 42548 55751 54831 8241 5276 Description of the system Goal: compute a Gröbner basis ◮ Total degree grading ◮ Ideal invariant under the group → difficult (intractable with Magma) ( Z / 2 Z ) n − 1 ⋊ S n , → non regular rewritten with the invariants: ◮ Weighted degree grading � e i := e i ( x 2 1 , . . . , x 2 n ) ( 1 ≤ i ≤ n − 1 ) ˜ Weight (˜ e i ) = 2 · Weight ( e i ) → easier e n ( x 1 , . . . , x n ) → regular ◮ n equations of degree 2 n − 1 ◮ Two questions: in F q [˜ e 1 , . . . , ˜ e n − 1 , e n ] ◮ Algorithms for this structure? ◮ 1 DLP = thousands of such systems ◮ Complexity estimates?
Motivation Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013) 7871 53362 26257 25203 19817 9843 11204 18574 50900 128 23117 29737 3752 25459 e 16 e 8 e 7 e 6 e 2 e 5 e 3 e 4 e 4 e 3 e 5 0 = 14294 + 36407 ˜ 1 + 3037 ˜ 1 ˜ e 2 + 28918 ˜ 1 ˜ 2 + 52187 ˜ 1 ˜ 2 + 27006 ˜ 1 ˜ 2 + 58263 ˜ 1 ˜ 5 2 32775 58813 38424 29298 36574 64195 17964 20289 20802 41456 56353 46683 63059 57146 46217 63811 40524 4522 27518 5478 50777 6881 1728 32176 e 3 + 2067 smaller monomials e 2 e 6 e 7 e 8 e 7 e 6 ˜ 1 ˜ e 1 ˜ ˜ ˜ ˜ 1 ˜ ˜ 1 ˜ e 2 ˜ + 45631 2 + 48809 2 + 1238 2 + 18652 e 3 + 31159 13171 1858 8056 54885 28424 42548 55751 54831 8241 5276 Description of the system Goal: compute a Gröbner basis ◮ Total degree grading ◮ Ideal invariant under the group → difficult (intractable with Magma) ( Z / 2 Z ) n − 1 ⋊ S n , → non regular rewritten with the invariants: ◮ Weighted degree grading � e i := e i ( x 2 1 , . . . , x 2 n ) ( 1 ≤ i ≤ n − 1 ) ˜ Weight (˜ e i ) = 2 · Weight ( e i ) → easier e n ( x 1 , . . . , x n ) → regular ◮ n equations of degree 2 n − 1 ◮ Two questions: in F q [˜ e 1 , . . . , ˜ e n − 1 , e n ] ◮ Algorithms for this structure? ◮ 1 DLP = thousands of such systems ◮ Complexity estimates?
Motivation Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013) 7871 53362 26257 25203 19817 9843 11204 18574 50900 128 23117 29737 3752 25459 e 16 e 8 e 7 e 6 e 2 e 5 e 3 e 4 e 4 e 3 e 5 0 = 14294 + 36407 ˜ 1 + 3037 ˜ 1 ˜ e 2 + 28918 ˜ 1 ˜ 2 + 52187 ˜ 1 ˜ 2 + 27006 ˜ 1 ˜ 2 + 58263 ˜ 1 ˜ 5 2 32775 58813 38424 29298 36574 64195 17964 20289 20802 41456 56353 46683 63059 57146 46217 63811 40524 4522 27518 5478 50777 6881 1728 32176 e 3 + 2067 smaller monomials e 2 e 6 e 7 e 8 e 7 e 6 ˜ 1 ˜ e 1 ˜ ˜ ˜ ˜ 1 ˜ ˜ 1 ˜ e 2 ˜ + 45631 2 + 48809 2 + 1238 2 + 18652 e 3 + 31159 13171 1858 8056 54885 28424 42548 55751 54831 8241 5276 Description of the system Goal: compute a Gröbner basis ◮ Total degree grading ◮ Ideal invariant under the group → difficult (intractable with Magma) ( Z / 2 Z ) n − 1 ⋊ S n , → non regular rewritten with the invariants: ◮ Weighted degree grading � e i := e i ( x 2 1 , . . . , x 2 n ) ( 1 ≤ i ≤ n − 1 ) ˜ Weight (˜ e i ) = 2 · Weight ( e i ) → easier e n ( x 1 , . . . , x n ) → regular ◮ n equations of degree 2 n − 1 ◮ Two questions: in F q [˜ e 1 , . . . , ˜ e n − 1 , e n ] ◮ Algorithms for this structure? ◮ 1 DLP = thousands of such systems ◮ Complexity estimates?
Recommend
More recommend