on the asymptotic tightness of the griesmer bound assia
play

ON THE ASYMPTOTIC TIGHTNESS OF THE GRIESMER BOUND Assia Rousseva - PowerPoint PPT Presentation

ON THE ASYMPTOTIC TIGHTNESS OF THE GRIESMER BOUND Assia Rousseva Sofia University (joint work with Ivan Landjev) Fifth Irsee Conference Finte Geometries, Kloster Irsee, 10.16.09.2017 The Main Problem in Coding Theory Given the


  1. ON THE ASYMPTOTIC TIGHTNESS OF THE GRIESMER BOUND Assia Rousseva Sofia University (joint work with Ivan Landjev) – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 –

  2. The Main Problem in Coding Theory Given the positive integers k and d , and a prime power q , find the smallest value of n for which there exists a linear [ n, k, d ] q -code. This value is denoted by n q ( k, d ) . The Griesmer bound: k − 1 ⌈ d � n q ( k, d ) ≥ g q ( k, d ) := q i ⌉ i =0 Griesmer code: an [ n, k, d ] q code with n = g q ( k, d ) . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 1

  3. k , q - fixed, d → ∞ Theorem. For a given dimension k , there exists an integer d 0 such that for all d ≥ d 0 n q ( k, d ) − g q ( k, d ) = 0 . 2 ⌉ 2 k − 1 . • Baumert, McEliece: n 2 ( k, d ) − g 2 ( k, d ) = 0 for all d ≥ ⌈ k − 1 • V. I. Belov, V. N. Logachev, V. P. Sandimirov, R. Hill: n q ( k, d ) − g q ( k, d ) = 0 for all d ≥ ( k − 2) q k − 1 + 1 . • Maruta: n q ( k, d ) − g q ( k, d ) > 0 for d = ( k − 2) q k − 1 − ( k − 1) q k − 2 for q ≥ k , k = 3 , 4 , 5 , and for q ≥ 2 k + 3 , k ≥ 6 . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 2

  4. d , q - fixed, k → ∞ Theorem. (S. Dodunekov) For every two integers t and d ≥ 3 , there exists an integer k 0 such that for all k ≥ k 0 n q ( k, d ) − g q ( k, d ) ≥ t. Idea of proof. d , q , R = ⌊ ( d − 1) / 2 ⌋ - fixed, k → ∞ R � g q ( k, d ) � | B g q ( k,d ) � ( q − 1) R − ( R ) | = → k →∞ ∞ . q i i =0 – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 3

  5. Consider an optimal [ n q ( k, d ) , k, d ] q -code. From the sphere-packing bound: R � n q ( k, d ) � q k · � q n q ( k,d ) ( q − 1) i ≥ i i =0 R � g q ( k, d ) � q k · � ( q − 1) i ≥ i i =0 whence n q ( k, d ) − k ≥ log q | B g q ( k,d ) ( R ) | → ∞ . R – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 4

  6. On the other hand d + ⌈ d q ⌉ + ⌈ d q 2 ⌉ + . . . + ⌈ d g q ( k, d ) = q k − 1 ⌉ d + d q + d d < q 2 + . . . + q k − 1 + k − 1 whence g q ( k, d ) − k < d q k − 1 q k − q k − 1 − 1 , and ( R ) | − d q k − 1 n q ( k, d ) − g q ( k, d ) > log q | B g q ( k,d ) q k − q k − 1 + 1 → ∞ . q – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 5

  7. Problem A. Given the prime power q and the positive integer k , what is the smallest value of t , denoted t q ( k ) , such that there exists a [ g q ( k, d ) + t, k, d ] q -code for all d . Or, in other words, what is t q ( k ) := max d ( n q ( k, d ) − g q ( k, d )) . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 6

  8. Known Results for Small k • t q (2) = 0 for all q • t q (3) = 1 for all q ≤ 19 ; • t q (3) ≤ 2 for q = 23 , 25 , 27 , 29 ; • t 3 (4) = 1 ; • t 4 (4) = 1 ; • t 5 (4) = 2 ( t = 2 for d = 25 only); • t 5 (5) ≤ 5 . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 7

  9. The Geometric Approach to Linear Codes [ g q ( k, d ) + t, k, d ] q -code ∼ ( g q ( k, d ) + t, g q ( k, d ) + t − d ) -arc in PG( k − 1 , q ) . Write d = sq k − 1 − λ k − 2 q k − 2 − . . . − λ 1 q − λ 0 , ( ⋆ ) where 0 ≤ λ i < q . Then g q ( k, d ) = sv k − λ k − 2 v k − 1 − . . . − λ 1 v 2 − λ 0 v 1 , w q ( k, d ) = g q ( k, d ) − d = sv k − 1 − λ k − 2 v k − 2 − . . . − λ 1 v 1 , where v i = ( q i − 1) / ( q − 1) . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 8

  10. Problem B. Find the smallest t for which there exists a ( g q ( k, d )+ t, w q ( k, d )+ t ) -arc in PG( k − 1 , q ) for all d . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 9

  11. Let K be a ( g q ( k, d ) + t, w q ( k, d ) + t ) -arc in PG( k − 1 , q ) Denote the maximal point multiplicity in K by s 0 ≤ t + s . Construct the multiset F := s 0 PG( k − 1 , q ) − K . This multiset F is a minihyper with parameters ( σv k + λ k − 2 v k − 1 + . . . + λ 1 v 2 + λ 0 v 1 − t, σv k − 1 + λ k − 2 v k − 2 + . . . + λ 1 v 1 − t ) , where � s 0 − s if s < s 0 ≤ t + s, σ = 0 if s 0 ≤ s, with maximal point multiplicity σ + s . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 10

  12. Problem C. For all d given by d = sq k − 1 − λ k − 2 q k − 2 − . . . − λ 1 q − λ 0 , find the minimum value of t for which there exists a minihyper in PG( k − 1 , q ) with parameters ( σv k + λ k − 2 v k − 1 + . . . + λ 1 v 2 + λ 0 v 1 − t, σv k − 1 + λ k − 2 v k − 2 + . . . + λ 1 v 1 − t ) . with maximal point multiplicity σ + s . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 11

  13. Example. Let d = 85 , k = 4 , q = 5 . Then s = 1 , λ 2 = 1 , λ 1 = 3 , λ 0 = 0 , g 5 (4 , 85) = 107 , w = 22 . As a code: Find the smallest t so that there exists a [107 + t, 4 , 85] 5 -code. As an arc: Find the smallest t so that there exists a (107 + t, 22 + t ) -arc in PG(3 , 5) As a minihyper: σ + s 1 2 3 4 t 0 (49 , 9) 1 (48 , 8) (204 , 39) 2 (47 , 7) (203 , 38) (359 , 69) 3 (46 , 6) (202 , 37) (358 , 68) (514 , 99) – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 12

  14. Theorem. Let d = sq k − 1 − λ k − 2 q k − 2 − . . . − λ 1 q − λ 0 , and let the multiset F be a minihyper in PG( k − 1 , q ) with parameters ( σv k + λ k − 2 v k − 1 + . . . + λ 0 v 1 − τ 1 , σv k − 1 + λ k − 2 v k − 2 + . . . + λ 1 v 1 − τ 1 ) . Define the multiset F ′ by � F ( x ) if F ( x ) ≤ σ + s, F ′ ( x ) = σ + s if F ( x ) > σ + s. Let N = |F| and N ′ = |F ′ | . If F − F ′ is an ( N − N ′ , τ 2 ) -arc then there exists a ( g q ( k, d ) + t, w q ( k, d ) + t ) -arc in PG( k − 1 , q ) , or, equivalently, a code with parameters [ g q ( k, d ) + t, k, d ] q , with t = τ 1 + τ 2 . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 13

  15. Example. k = 4 , d = 2 q 3 − 4 q 2 ; s = 2 , λ 2 = 4 , λ 1 = 0 s 0 2 3 4 t 0 (4 v 3 , 4 v 2) 1 (4 v 3 − 1 , 4 v 2 − 1) ( v 4 + 4 v 3 − 1 , v 3 + 4 v 2 − 1) 2 (4 v 3 − 2 , 4 v 2 − 2) ( v 4 + 4 v 3 − 2 , v 3 + 4 v 2 − 2) (2 v 4 + 4 v 3 − 2 , 2 v 3 + 4 v 2 − 2) 3 (4 v 3 − 3 , 4 v 2 − 3) ( v 4 + 4 v 3 − 3 , v 3 + 4 v 2 − 3) (2 v 4 + 4 v 3 − 3 , 2 v 3 + 4 v 2 − 3) (4 v 3 , 4 v 2 ) -minihyper, σ = 0 , τ 1 = 0 – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 14

  16. (4 v 3 − 3 , 4 v 2 − 3) -minihyper with maximal point multiplicity 2 [ g q (4 , d ) + 3 , 4 , d ] q -code F − F ′ F ′ F – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 15

  17. (4 v 3 − 2 , 4 v 2 − 2) -minihyper with maximal point multiplicity 2: Take the four planes to have a common point, but no three with a common line F − F ′ is a (2 , 2) -arc, i.e. t = 2 [ g q (4 , d ) + 2 , 4 , d ] q -code for all q F − F ′ F ′ F For q = 5 there exists a code with t = 1 , i.e. a [189 , 4 , 150] 5 -code, which is optimal. – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 16

  18. D ( t ) q ( k ) := { d ∈ Z | 1 ≤ d ≤ q k − 1 , n q ( k, d ) = g q ( k, d ) + t } . Lemma. Let d 1 < d 2 be integers from D ( t ) q ( k ) . Then for every integer d with d 1 < d < d 2 k − 2 ( ⌈ d 2 q i ⌉ − ⌈ d 1 � n q ( k, d ) ≤ g q ( k, d ) + t + q i ⌉ ) . i =1 Theorem. t q ( k ) ≤ q k − 2 . Theorem. t q (4) ≤ q − 1 . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 17

  19. The Case k = 3 Problem D. (S. Ball): For a fixed n − d , is there always a 3-dimensional linear [ n, 3 , d ] -code meeting the Griesmer bound (or at least close to the Griesmer bound, maybe a constant or log q away)? The answer to the first part of the question in Problem D is NO. Take w = n − d = q + 2 . Then an optimal arcs has n = q 2 + q + 2 , but a [ q 2 + q + 2 , 3 , q 2 ] q -code is NOT a Griesmer code. Lemma. Let K be an ( n, w ) -arc in PG(2 , q ) with n = ( w − 1) q + w − α and let C K be the [ n, 3 , d ] q -code associated with K . Then n = t + g q (3 , d ) with t = ⌊ α/q ⌋ . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 18

  20. Theorem. For all d ≥ q 2 there exist Griesmer [ n, 3 , d ] q codes (arcs). In fact, Griesmer codes do exist for all d ≥ q 2 − 2 q + 1 For q 2 − 3 q + 1 ≤ d ≤ q 2 − 2 q we have t = 0 or t = 1 . Theorem. If q = 2 h then t q (3) ≤ log 2 q − 1 = h − 1 . The proof is based on the following two lemmas. – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 19

  21. Lemma. Let q = 2 h . The sum of r maximal arcs is equivalent to a linear [ n, 3 , d ] q -code whose length satisfies n = g q (3 , d ) + ( r − 1) , i.e. its length exceeds by r − 1 the corresponding Griesmer bound. Lemma. Let q = 2 h . Every integer m ≤ q − 1 can be represented as m = 2 a 1 + . . . + 2 a r − r, for some a i ∈ { 1 , . . . , h − 1 } and some r ≤ h = log 2 q . – Fifth Irsee Conference “Finte Geometries”, Kloster Irsee, 10.–16.09.2017 – 20

Recommend


More recommend