on spatial reasoning with description logics motivation
play

On Spatial Reasoning with Description Logics Motivation The family - PowerPoint PPT Presentation

On Spatial Reasoning with Description Logics Motivation The family of ALCI logics Work in progress What we know What we dont know Future Work Michael Wessel, April 2002 Motivation Slide


  1. �✁ ✁ On Spatial Reasoning with Description Logics • Motivation • The family of ALCI logics • Work in progress – What we know – What we don’t know • Future Work Michael Wessel, April 2002

  2. � ✁ ✂ ✁ Motivation Slide 2 • We want a DL for “qualitative composition-table based spatial reasoning” in the style of ALCRP ( S 2 ) , but without syntax-restrictions (if possible) • With roles corresponding to RCC relationships • Cohn ’93: Multi-modal spatial logic with “ ” for each RCC-relationship R , • Purely relational semantics (no truly spatial interpretations yet) • Related to Relation Algebras, but weaker semantics (e.g., our models must not necessarily be representations of finite relation algebras) Michael Wessel, April 2002

  3. ✁ ✁ ✁ ✁ � ✁ �✁ � ✁ �✁ ✁ � �✁ � ✁ ✁ The ALCI RCC -family Slide 3 • We are considering this problem in a DL-setting • In contrast to previous work: inverse roles • ALCI with disjoint roles and global role axioms of the form S ◦ T ⊑ R 1 ⊔ · · · ⊔ R • Semantics: I | = S ◦ T ⊑ R 1 ⊔ · · · ⊔ R iff ◦ T ⊆ R 1 ∪ · · · ∪ R S • With role boxes corresponding to RCC1, RCC2, RCC3, RCC5, RCC8: “ ALCI -family”, ALCI 1 , ALCI 2 , . . . , ALCI 8 • With arbitrary role boxes: undecidable (representability of Relation Algebras is undecidable) Michael Wessel, April 2002

  4. Composition Table Based Reasoning: RCC8 Slide 4 a b c DC ( a , c ) EC ( a , c ) PO ( a , c ) TPP ( a , c ) TPPI ( a , c ) Given EC ( a, b ) , EC ( b, c ) , what do we know about the relationship between a and c ? Lookup EC ◦ EC in the RCC8 composition-table: ∀ x, y, z : EC ( x , y ) ∧ EC ( y , z ) ⇒ ( DC ( x , z ) ∨ EC ( x , z ) ∨ PO ( x , z ) ∨ TPP ( x , z ) ∨ TPPI ( x , z )) EC ◦ EC ⊑ DC ⊔ EC ⊔ PO ⊔ TPP ⊔ TPPI Michael Wessel, April 2002

  5. � Qualitative Spatial Reasoning Example Slide 5 ˙ ⊑ circle figure . = figure ⊓ ∃ EC .figure figure touching a figure . = figure ⊓ special figure ∀ PO . ¬ figure ⊓ ∀ NTPPI . ¬ figure ⊓ ∀ TPPI . ¬ circle ⊓ ∃ TPPI . ( figure ⊓ ∃ EC .circle ) special figure ⊑ figure touching a figure iff figure ⊓ ∀ PO . ¬ figure ⊓ ∀ NTPPI . ¬ figure ⊓ ∀ TPPI . ¬ circle ⊓ ∃ TPPI . ( figure ⊓ ∃ EC .circle ) ⊓ ¬ ( figure ⊓ ∃ EC .figure ) is unsatisfiable w.r.t. = { . . . , TPPI ◦ EC ⊑ EC ⊔ PO ⊔ TPPI ⊔ NTPPI , . . . } Michael Wessel, April 2002

  6. � � � Illustration of I | Slide 6 = special figure EC ( b, c ) , PO ( a, c ) TPPI ( a, b ) c b EC ( b, c ) , EC ( a, c ) EC ( b, c ) , NTPPI ( a, c ) EC ( b, c ) , TPPI ( a, c ) a Michael Wessel, April 2002

  7. � � � � � ✂ ✂ ✂ ✂ � ✂ ✂ ALCI RCC 1 Slide 7 • “RCC1”: Only one spatial role SR , “spatially related” • Composition table: { SR ◦ SR → SR } • SR is an equivalence relation • Equivalent to modal logic “S5” • “S5” reduction principles: p ≡ p , p ≡ p , p ≡ p , p ≡ p ⇒ nested occurrences of modalities can be flattened • NP-complete satisfiability problem Michael Wessel, April 2002

  8. ✁ ✁ ALCI RCC 2 Slide 8 • “RCC2”: reflexive, symmetric role O = “overlap”, irreflexive and symmetric role DR = “discrete from” C • Models are fairly trivial: each ∃ O.C complete random graph with Id (∆ ) ⊆ O is a model of the role box • Instead of reduction principles, we have axioms like ∃ O .C ⇒ ∀ O. ( C ⊔∃{ O, DR } .C ) ⊓∀ DR. ∃{ O, DR } .C ) • Complexity? Michael Wessel, April 2002

  9. ✁ �✁ ✁ ✁ ✁ ✁ ALCI RCC 3 . . . ALCI RCC 8 : Role Constraints Slide 9 • ≥ ALCI 3 : There is a special role EQ • Semantics: – “Weak”: Id (∆ ) ⊆ EQ ⇒ “Equality” (“EQ” is congruence relation for roles) – “Strong”: Id (∆ ) = EQ ⇒ “Identity” (as in Relation Algebras: “EQ” is congruence relation for roles and concepts) • Further constraints, according to the RCC table – Reflexiveness, e.g. “Overlap” – Symmetry, e.g. “Externally Connected” – Anti-symmetry and irreflexiveness, e.g. “Proper Part” Michael Wessel, April 2002

  10. ✁ � ALCI RCC 3 is Decidable Slide 10 ◦ DR ( a, b ) ONE ( a, b ) EQ ( a, b ) DR ( b, c ) * { DR , ONE } DR ONE ( b, c ) { DR , ONE } * ONE EQ ( b, c ) DR ONE EQ With the strong EQ semantics, an easy translation into F 2 (=) can be given: simply replace “EQ” in C with “=” ( C = ) ∧ ∀ x, y : DR ( x, y ) ⊕ ONE ( x, y ) ⊕ x = y ∧ φ ✂☎✄ ∀ x, y : DR ( x, y ) ⇔ DR ( y, x ) ∧ ∀ x, y : ONE ( x, y ) ⇔ ONE ( y, x ) Michael Wessel, April 2002

  11. ALCI RCC 3 is Decidable (2) Slide 11 • With the weak EQ -semantics, things are not so obvious • Not every complete, { DR , ONE , EQ } -edge-colored graph is a model for the role box axioms • We have to verify that ∀ x, y, z : EQ ( x, z ) ⇔ DR ( x, y ) ∧ DR ( y, z ) ⊕ ONE ( x, y ) ∧ ONE ( y, z ) ⊕ EQ ( x, y ) ∧ EQ ( y, z ) holds, using only two variables • Idea: use “ = ” to enforce network consistency, but take care of the fact that “ = ”-connected objects may have different propositional descriptions Michael Wessel, April 2002

  12. ✆ ✞ ✞ ✞ ✞ ✄ ✟ ✞ ✝ ✄ ✆ ✟ ☎ ✞ ☎ ✆ ✝ ✞ ✆ ✄ ✄ ✞ ✞ ✟ ✂ ✂ � ✁ � ✁ � � ✟ ALCI RCC 3 is Decidable (3) Slide 12 = = DR DR DR ONE DR ONE = DR ONE ✟✡✠ DR clique ONE • Nodes in EQ -clique have equivalent modal point of view • May have different propositional descriptions • Left structure needs three, right structure only two variables for description Michael Wessel, April 2002

  13. �✁ ✁ �✁ ✁ �✁ ✁ �✁ ✁ ALCI RCC 5 & ALCI RCC 8 Slide 13 • No finite model property • ALCI 5 : PP , PPI • ALCI 8 : even TPP , TPPI , NTPP , NTPPI • ALCI 8 somehow allows the distinction of a role and even its transitive orbit ( → “PDL binary counter” odd concept possible) odd • This seems to be impossible in ALCI 5 Michael Wessel, April 2002

  14. ✁ �✁ ✂ ✁ ✁ The Concept even odd chain Slide 14 even odd chain = even ⊓ ( ∃ TPPI . ∃ TPPI . ⊤ ) ⊓ ( even ⇒ ∀ TPPI .odd ) ⊓ ( odd ⇒ ∀ TPPI .even ) ⊓ ( ∀ NTPPI . ( ( even ⇒ ∀ TPPI .odd ) ⊓ ( odd ⇒ ∀ TPPI .even ))) ⊓ ( ∀ TPPI . ( ( even ⇒ ∀ TPPI .odd ) ⊓ ( odd ⇒ ∀ TPPI .even ))) ⊓ ( ∀ NTPPI . ∃ TPPI . ⊤ ) ) + − T P P I (( T P P I ) ⊆ NT P P I Michael Wessel, April 2002

  15. Is it Possible to Represent Grids? Slide 15 EQ EQ PO 2 TPP 3 PO EQ PO TPP 1 NTPP TPP TPP EQ TPP TPP NTPP 4 NTPP NTPP NTPP NTPP PO EQ NTPP PO TPP TPP NTPP 0 PO NTPP NTPP NTPP PO NTPP TPP EQ 5 NTPP NTPP TPP PO PO EQ 8 NTPP TPP TPP EQ 6 EQ 7 Michael Wessel, April 2002

  16. Is it Possible to Represent Grids? (2) Slide 16 EQ EQ EQ NTPPI TPP PO 4 PO NTPP 3 5 TPP PO PO TPP EQ EQ TPP PO NTPP NTPP TPP TPP NTPP 2 6 TPP NTPP NTPP TPP TPP TPP NTPP NTPP PO PO EQ EQ NTPP NTPP NTPP PO PO NTPP NTPP 1 7 NTPP NTPP PO TPP TPP NTPP PO NTPPI NTPP NTPP PO PO NTPP NTPP PO NTPP PO NTPP NTPP NTPP EQ NTPP NTPP PO NTPP NTPP NTPP NTPP NTPP NTPP NTPP NTPP NTPP TPP PO EQ PO PO 0 8 PO NTPP PO NTPP PO PO NTPP NTPP PO PO NTPP NTPP NTPP TPP NTPP NTPP PO TPP PO PO NTPP NTPP NTPP NTPP NTPP EQ EQ 15 9 NTPP NTPP NTPP NTPP NTPP TPP TPP NTPP NTPP TPP NTPP TPP TPP NTPP NTPP PO TPP EQ EQ 14 10 TPP PO PO TPP NTPP PO PO TPP NTPPI EQ EQ 13 11 EQ 12 Michael Wessel, April 2002

  17. Is it Possible to Represent Grids? (3) Slide 17 Even though infinite grid-like models exists, we found no way to enforce the coincidence of the PO x ◦ y - and y ◦ x - successors. TPP NTPP Michael Wessel, April 2002

  18. �✁ ✁ Finite Model Reasoning with ALCI RCC 5 ? Slide 18 • ALCI 5 contains the “proper part” role PP • Question: Suppose we disallow the use of PP in concepts – then, do we have the finite model property back? • Answer: No! Counter example: ∃ DR. ⊤ ⊓ ∀ DR. ( ∃ P O. ∃ DR.C ⊓ ∀ P O. ¬ C ⊓ ∀ DR. ¬ C ) ⇒ There does not seem to be a way to tell, syntactically, whether a concept admits a finite model Michael Wessel, April 2002

  19. � � Future Work Slide 19 • Check out results from “Algebraic Logic” – Representability of Relation Algebras (RAs) is, generally, undecidable ∗ There can not be a (decidable) ALCI with arbitrary role boxes – So is the equational theory of arbitrary RAs – Decidable classes of (relation) algebras that are useful for spatial reasoning with DLs? • Multi-dimensional modal logics • Arrow-logic Michael Wessel, April 2002

Recommend


More recommend