on solving linear systems in sublinear time
play

On Solving Linear Systems in Sublinear Time Alexandr Andoni, - PowerPoint PPT Presentation

On Solving Linear Systems in Sublinear Time Alexandr Andoni, Columbia University Robert Krauthgamer, Weizmann Institute Yosef Pogrow, Weizmann Institute Google WOLA 2019 Solving Linear Systems Input: and


  1. On Solving Linear Systems in Sublinear Time Alexandr Andoni, Columbia University Robert Krauthgamer, Weizmann Institute Yosef Pogrow, Weizmann Institute ๏ƒ  Google WOLA 2019

  2. Solving Linear Systems Input: ๐ต โˆˆ โ„ ๐‘œร—๐‘œ and ๐‘ โˆˆ โ„ ๐‘œ ๏ฎ Output: vector ๐‘ฆ that solves ๐ต๐‘ฆ = ๐‘ ๏ฎ Many algorithms, different variants: ๏ฎ Matrix ๐ต is sparse, Laplacian, PSD etc. ๏ฑ Bounded precision (solution ๐‘ฆ is approximate) vs. exact arithmetic ๏ฑ Significant progress: Linear system in Laplacian matrix ๐‘€ ๐ป can be ๏ฎ 1 solved approximately in near-linear time เทจ ๐‘ƒ(nnz ๐‘€ ๐ป โ‹… log ๐œ— ) [Spielman- Teng โ€™ 04, โ€ฆ , Cohen-Kyng-Miller-Pachocky-Peng-Rao-Xu โ€™ 14] Our focus: Sublinear running time On Solving Linear Systems in Sublinear Time 2

  3. Sublinear-Time Solver Input: ๐ต โˆˆ โ„ ๐‘œร—๐‘œ , ๐‘ โˆˆ โ„ ๐‘œ (also ๐œ— > 0 ) and ๐‘— โˆˆ [๐‘œ] ๏ฎ ๐‘ฆ ๐‘— from (any) solution ๐‘ฆ โˆ— to ๐ต๐‘ฆ = ๐‘ Output: approximate coordinate เทœ ๏ฎ ๐‘ฆ โˆ’ ๐‘ฆ โˆ— โˆž โ‰ค ๐œ— ๐‘ฆ โˆ— โˆž Accuracy bound เทœ ๏ฑ Formal requirement: There is a solution ๐‘ฆ โˆ— to the system, such that ๏ฎ โˆ— โ‰ค ๐œ— ๐‘ฆ โˆ— โˆž โ‰ฅ 3 โˆ€๐‘— โˆˆ ๐‘œ , Pr เทœ ๐‘ฆ ๐‘— โˆ’ ๐‘ฆ ๐‘— 4 Follows framework of Local Computation Algorithms (LCA), ๏ฎ previously used for graph problems [Rubinfeld-Tamir-Vardi-Xie โ€™ 10] On Solving Linear Systems in Sublinear Time 3

  4. Motivation Fast quantum algorithms for solving linear systems and for machine ๏ฎ learning problems [Harrow-Hassidim-Lloyd โ€™ 09, โ€ฆ ] Can we match their performance classically? ๏ฑ Recent success story: quantum ๏ƒ  classical algorithm [Tang โ€™ 18] ๏ฑ New direction in sublinear-time algorithms ๏ฎ โ€œ Local โ€ computation in numerical problems ๏ฑ Compare computational models (representation, preprocessing), ๏ฑ accuracy guarantees, input families (e.g., Laplacian vs. PSD) Known quantum algorithms have modeling requirements (e.g., quantum ๏ฑ encoding of ๐‘ ) On Solving Linear Systems in Sublinear Time 4

  5. Algorithm for Laplacians Informally: Can solve Laplacian systems of bounded-degree ๏ฎ expander in polylog(n) time Key limitations: sparsity and condition number ๏ฑ Notation: ๏ฎ ๐‘€ ๐ป = ๐ธ โˆ’ ๐ต is the Laplacian matrix of graph ๐ป ๏ฑ + is its Moore-Penrose pseudo-inverse ๐‘€ ๐ป ๏ฑ Theorem 1: Suppose the input is a ๐‘’ -regular ๐‘œ -vertex graph ๐ป , ๏ฎ together with its condition number ๐œ† > 0 , ๐‘ โˆˆ โ„ ๐‘œ , ๐‘ฃ โˆˆ ๐‘œ and ๐œ— > 0 . ๐‘ฆ ๐‘ฃ โˆˆ โ„ such that for ๐‘ฆ โˆ— = ๐‘€ ๐ป + ๐‘ , Our algorithm computes เทœ โˆ— โ‰ค ๐œ— ๐‘ฆ โˆ— โˆž โ‰ฅ 3 โˆ€๐‘ฃ โˆˆ ๐‘œ , Pr เทœ ๐‘ฆ ๐‘ฃ โˆ’ ๐‘ฆ ๐‘ฃ 4 , and runs in time เทจ ๐‘ƒ(๐‘’๐œ— โˆ’2 ๐‘ก 3 ) for ๐‘ก = เทจ ๐‘ƒ(๐œ† log ๐‘œ) . More inputs? Faster? On Solving Linear Systems in Sublinear Time 5

  6. Some Extensions Can replace ๐‘œ with ๐‘ 0 ๏ฎ Example: Effective resistance can be approximate (in expanders) in ๏ฑ constant running time! ๐‘†eff(๐‘ฃ, ๐‘ค) = ๐‘“ ๐‘ฃ โˆ’ ๐‘“ ๐‘ค ๐‘ˆ ๐‘€ ๐ป + (๐‘“ ๐‘ฃ โˆ’ ๐‘“ ๐‘ค ) Improved running time if ๏ฎ Graph ๐ป is preprocessed ๏ฑ One can sample a neighbor in ๐ป , or ๏ฑ Extends to Symmetric Diagonally Dominant (SDD) matrix ๐‘‡ ๏ฎ ๐œ† is condition number of ๐ธ โˆ’1/2 ๐‘‡๐ธ โˆ’1/2 ๏ฑ On Solving Linear Systems in Sublinear Time 6

  7. Lower Bound for PSD Systems Informally: Solving โ€œ similar โ€ PSD systems requires polynomial time ๏ฎ Similar = bounded condition number and sparsity ๏ฑ Even if the matrix can be preprocessed ๏ฑ Theorem 2: For certain invertible PSD matrices ๐‘‡ , with bounded ๏ฎ sparsity ๐‘’ and condition number ๐œ† , every randomized algorithm must query ๐‘œ ฮฉ(1/๐‘’ 2 ) coordinates of the input ๐‘ . Here, the output is เทœ ๐‘ฆ ๐‘ฃ โˆˆ โ„ for a fixed ๐‘ฃ โˆˆ ๐‘œ , required to satisfy ๏ฎ โˆ— โ‰ค 1 3 5 ๐‘ฆ โˆ— โˆž โ‰ฅ โˆ€๐‘ฃ โˆˆ ๐‘œ , Pr ๐‘ฆ ๐‘ฃ โˆ’ ๐‘ฆ ๐‘ฃ เทœ 4 , for ๐‘ฆ โˆ— = ๐‘‡ โˆ’1 ๐‘ . In particular, ๐‘‡ may be preprocessed ๏ฎ On Solving Linear Systems in Sublinear Time 7

  8. Dependence on Condition Number Informally: Quadratic dependence on ๐œ† is necessary ๏ฎ Our algorithmic bound เทฉ O(๐œ† 3 ) is near-optimal, esp. when matrix ๐‘‡ can be ๏ฑ preprocessed Theorem 3: For certain graphs ๐ป of maximum degree 4 and any ๏ฎ condition number ๐œ† > 0 , every randomized algorithm (for ๐‘€ ๐ป ) with 1 log ๐‘œ must probe เทฉ ฮฉ(๐œ† 2 ) coordinates of the input ๐‘ . accuracy ๐œ— = Again, the output is เทœ ๐‘ฆ ๐‘ฃ โˆˆ โ„ for a fixed ๐‘ฃ โˆˆ ๐‘œ , required to satisfy ๏ฎ โˆ— โ‰ค 1 3 log ๐‘œ ๐‘ฆ โˆ— โˆž โ‰ฅ โˆ€๐‘ฃ โˆˆ ๐‘œ , Pr ๐‘ฆ ๐‘ฃ โˆ’ ๐‘ฆ ๐‘ฃ เทœ 4 , for ๐‘ฆ โˆ— = ๐‘€ ๐ป + ๐‘ . In particular, ๐ป may be preprocessed ๏ฎ On Solving Linear Systems in Sublinear Time 8

  9. Algorithmic Techniques Famous Monte-Carlo method of von Neumann and Ulam: ๏ฎ Write matrix inverse by power series ๐ฝ โˆ’ ๐‘Œ โˆ’1 = ฯƒ ๐‘ขโ‰ฅ0 ๐‘Œ ๐‘ข โˆ€ ๐‘Œ < 1 , then estimate it by random walks (in ๐‘Œ ) with unbiased expectation Inverting a Laplacian ๐‘€ ๐ป = ๐‘’๐ฝ โˆ’ ๐ต corresponds to summing walks in ๐ป ๏ฎ ๐‘ˆ ฯƒ ๐‘ขโ‰ฅ0 ๐ต ๐‘ข ๐‘ as sum over all walks, estimate it by sampling For us: view ๐‘“ ๐‘ฃ ๏ฑ (random walks) Need to control: number of walks and their length ๏ฎ Large powers ๐‘ข > ๐‘ข โˆ— contribute relatively little (by condition number) ๏ฑ Estimate truncated series ( ๐‘ข โ‰ค ๐‘ข โˆ— ) by short random walks (by Chebyshev โ€™ s ๏ฑ inequality) On Solving Linear Systems in Sublinear Time 9

  10. Related Work โ€“ All Algorithmic Similar techniques were used before in related contexts but under ๏ฎ different assumptions, models and analyses: + [Doron-Le Gall- Probabilistic log-space algorithms for approximating ๐‘€ ๐ป ๏ฑ Ta-Shma โ€™ 17] Asks for entire matrix, uses many long random walks (independent of ๐œ† ) ๏ฎ Local solver for Laplacian systems with boundary conditions [Chung- ๏ฑ Simpson โ€™ 15] Solver relies on a different power series and random walks ๏ฎ Local solver for PSD systems [Shyamkumar-Banerjee-Lofgren โ€™ 16] ๏ฑ Polynomial time nnz ๐‘‡ 2/3 under assumptions like bounded matrix norm and ๏ฎ random ๐‘ฃ โˆˆ ๐‘œ Local solver for Pagerank [Bressan-Peserico-Pretto โ€™ 18, Borgs-Brautbar- ๏ฑ Chayes-Teng โ€™ 14] Polynomial time O(๐‘œ 2/3 ) and O( nd 1/2 ) for certain matrices (non-symmetric ๏ฎ but by definition are diagonally-dominant) On Solving Linear Systems in Sublinear Time 10

  11. Lower Bound Techniques PSD lower bound: Take Laplacian of 2๐‘’ -regular expander but with: ๏ฎ ๐‘ฃ high girth, ๏ฑ edges signed ยฑ1 at random, and ๏ฑ ๐‘ƒ( ๐‘’) on the diagonal (PSD but not Laplacian) ๏ฑ ๐‘  The graph looks like a tree locally ๏ฎ Up to radius ฮ˜ log ๐‘œ around ๐‘ฃ ๏ฑ ๐‘ ๐‘ฅ = 0 Set ๐‘ ๐‘ฅ = ยฑ1 for ๐‘ฅ at distance ๐‘  , and 0 otherwise ๏ฎ ๐‘ ๐‘ฅ = ยฑ1 Signs have small bias ๐œ€ โ‰ˆ ๐‘’ โˆ’๐‘ /2 ๏ฑ Recovering it requires reading ฮฉ(๐œ€ โˆ’2 ) entries ๏ฑ Using inversion formula, ๐‘ฆ ๐‘ฃ โ‰ˆ average of ๐‘ ๐‘ฅ โ€˜ s ๐‘ ๐‘ฅ = 0 ๏ฎ Condition number lower bound: Take two 3-regular expanders ๏ฎ connected by a matching of size ๐‘œ/๐œ† Let ๐‘ ๐‘ฅ = ยฑ1 with slight bias inside each expander ๏ฑ On Solving Linear Systems in Sublinear Time 11

  12. Further Questions Accuracy guarantees ๏ฎ Different norms? ๏ฑ Condition number of ๐‘‡ instead of ๐ธ โˆ’1/2 ๐‘‡๐ธ โˆ’1/2 ? ๏ฑ Other representations (input/output models)? ๏ฎ Access the input ๐‘ via random sampling? ๏ฑ Sample from the output ๐‘ฆ ? ๏ฑ Other numerical problems? ๏ฎ Thank You! On Solving Linear Systems in Sublinear Time 12

Recommend


More recommend