On semigroups associated with the Dunkl operators Joint work with Jacek Dziubański Agnieszka Hejna Instytut Matematyczny Uniwersytet Wrocławski Będlewo, 21.05.2019 A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 1 / 43
Table of Contents 1. Introduction Fourier analysis in the rational Dunkl setting 2. Dunkl translations 3. Semigroups of operators Radial case - heat semigroup associated with the Dunkl Laplacian Nonradial cases 4. Idea of the proofs Convolution with radial function Support of τ x f ( −· ) A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 2 / 43
Some classical semigroups Classical heat semigroup Generator: ∆ = � N j = 1 ∂ 2 j Associated multiplier: e −| ξ | 2 A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 3 / 43
Some classical semigroups Classical heat semigroup Generator: ∆ = � N Upper heat kernel estimate ( t = 1) j = 1 ∂ 2 j 1 Associated multiplier: ( 4 π ) N / 2 e − 1 4 | x − y | 2 e −| ξ | 2 A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 3 / 43
Some classical semigroups Classical heat semigroup Generator: ∆ = � N Upper heat kernel estimate ( t = 1) j = 1 ∂ 2 j 1 Associated multiplier: ( 4 π ) N / 2 e − 1 4 | x − y | 2 e −| ξ | 2 Semigroups associated with higher order derivatives Generator: L = ( − 1 ) ℓ + 1 � N j = 1 ∂ 2 ℓ j Associated multiplier: e − � N j = 1 | ξ j | 2 ℓ A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 3 / 43
Some classical semigroups Classical heat semigroup Generator: ∆ = � N Upper heat kernel estimate ( t = 1) j = 1 ∂ 2 j 1 Associated multiplier: ( 4 π ) N / 2 e − 1 4 | x − y | 2 e −| ξ | 2 Semigroups associated with higher order derivatives Generator: L = ( − 1 ) ℓ + 1 � N Upper integral kernel estimate (t=1) j = 1 ∂ 2 ℓ j 2 ℓ Associated multiplier: Ce − c | x − y | 2 ℓ − 1 e − � N j = 1 | ξ j | 2 ℓ A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 3 / 43
Some Dunkl semigroups Dunkl heat semigroup Generator: ∆ = � N j = 1 T 2 Upper heat kernel estimate ( t = 1) j Associated multiplier: w ( B ( x , 1 )) − 1 e − cd ( x , y ) 2 e −| ξ | 2 Semigroups associated with higher order Dunkl operators Generator: L = ( − 1 ) ℓ + 1 � N Upper integral kernel estimate (t=1) j = 1 T 2 ℓ j 2 ℓ Associated multiplier: w ( B ( x , 1 )) − 1 e − cd ( x , y ) 2 ℓ − 1 e − � N j = 1 | ξ j | 2 ℓ A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 4 / 43
H¨ ormander’s multiplier theorem Theorem (H¨ ormander) Let ψ be a smooth radial function such that supp ψ ⊆ { ξ : 1 4 � � ξ � � 4 } and ψ ( ξ ) ≡ 1 for { ξ : 1 2 � � ξ � � 2 } . If m satisfies M = sup � ψ ( · ) m ( t · ) � W s 2 < ∞ t > 0 for some s > N / 2, then T m f = ( m ˆ � f ) , is (A) of weak type ( 1 , 1 ) , (B) of strong type ( p , p ) for 1 < p < ∞ , (C) bounded on the Hardy space H 1 atom . A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 5 / 43
H¨ ormander’s multiplier theorem Theorem (J. Dziubański, A.H.) Let ψ be a smooth radial function such that supp ψ ⊆ { ξ : 1 4 � � ξ � � 4 } and ψ ( ξ ) ≡ 1 for { ξ : 1 2 � � ξ � � 2 } . If m satisfies M = sup � ψ ( · ) m ( t · ) � W s 2 < ∞ t > 0 for some s > N , then T m f = F − 1 ( m F f ) , is (A) of weak type ( 1 , 1 ) , (B) of strong type ( p , p ) for 1 < p < ∞ , (C) bounded on the Hardy space H 1 atom . A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 6 / 43
Reflections We consider the Euclidean space R N with the scalar product � x , y � = � N j = 1 x j y j , x = ( x 1 , ..., x N ) , y = ( y 1 , ..., y N ) . Reflection For a nonzero vector α ∈ R N the reflection σ α with respect to the orthogonal hyperplane α ⊥ orthogonal to a nonzero vector α is given by σ α x = x − 2 � x , α � � α � 2 α. A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 7 / 43
Root system and Weyl group Root system A finite set R ⊂ R N \ { 0 } is called a root system if σ α ( R ) = R for every α ∈ R . A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 8 / 43
Root system and Weyl group Root system A finite set R ⊂ R N \ { 0 } is called a root system if σ α ( R ) = R for every α ∈ R . Weyl group The finite group G generated by the reflections σ α is called the Weyl group ( reflection group ) of the root system. A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 8 / 43
Examples - product root systems A 1 A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 9 / 43
Examples - product root systems A 1 × A 1 A 1 × A 1 × A 1 A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 10 / 43
Examples of root systems A 2 B 2 A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 11 / 43
Examples of root systems G 2 I 2 ( 5 ) A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 12 / 43
Multiplicity function Multiplicity function A multiplicity function is a G -invariant function k : R → C which will be fixed and � 0. A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 13 / 43
Measure Let � N = N + k ( α ) α ∈ R ( N is the homogeneous dimension ). A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 14 / 43
Measure Let � N = N + k ( α ) α ∈ R ( N is the homogeneous dimension ). We define the measure � |� α, x �| k ( α ) . w ( x ) = α ∈ R A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 14 / 43
Measure Let � N = N + k ( α ) α ∈ R ( N is the homogeneous dimension ). We define the measure � |� α, x �| k ( α ) . w ( x ) = α ∈ R We have w ( B ( x , r )) ∼ r N � ( |� x , α �| + r ) k ( α ) , α ∈ R so dw ( x ) is doubling. A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 14 / 43
Dunkl operators Dunkl operators Given a root system R and multiplicity function k ( α ) the Dunkl operator T ξ is the following k -deformation of the directional derivative ∂ ξ by a difference operator: T ξ f ( x ) = ∂ ξ f ( x ) A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 15 / 43
Dunkl operators Dunkl operators Given a root system R and multiplicity function k ( α ) the Dunkl operator T ξ is the following k -deformation of the directional derivative ∂ ξ by a difference operator: � k ( α ) � α, ξ � f ( x ) − f ( σ α x ) T ξ f ( x ) = ∂ ξ f ( x ) + . 2 � α, x � α ∈ R A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 15 / 43
Dunkl operators Dunkl operators Given a root system R and multiplicity function k ( α ) the Dunkl operator T ξ is the following k -deformation of the directional derivative ∂ ξ by a difference operator: � k ( α ) � α, ξ � f ( x ) − f ( σ α x ) T ξ f ( x ) = ∂ ξ f ( x ) + . 2 � α, x � α ∈ R Example for N = 1 Tf ( x ) = ∂ f ( x ) + k ( α ) f ( x ) − f ( − x ) . x A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 15 / 43
Dunkl operators Dunkl operators Given a root system R and multiplicity function k ( α ) the Dunkl operator T ξ is the following k -deformation of the directional derivative ∂ ξ by a difference operator: � k ( α ) � α, ξ � f ( x ) − f ( σ α x ) T ξ f ( x ) = ∂ ξ f ( x ) + . 2 � α, x � α ∈ R Example for N = 1 Tf ( x ) = ∂ f ( x ) + k ( α ) f ( x ) − f ( − x ) . x Difference No Leibniz rule! A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 15 / 43
Dunkl kernel and Dunkl transform Dunkl kernel For fixed y ∈ R N the Dunkl kernel E ( x , y ) is the unique solution of the system T ξ f = � ξ, y � f , f ( 0 ) = 1 . In particular, T j , x E ( x , y ) = T e j , x E ( x , y ) = y j E ( x , y ) . A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 16 / 43
Dunkl kernel and Dunkl transform Dunkl kernel For fixed y ∈ R N the Dunkl kernel E ( x , y ) is the unique solution of the system T ξ f = � ξ, y � f , f ( 0 ) = 1 . In particular, T j , x E ( x , y ) = T e j , x E ( x , y ) = y j E ( x , y ) . E ( x , y ) is a generalization of exp( � x , y � ) . A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 16 / 43
Dunkl kernel and Dunkl transform Dunkl kernel For fixed y ∈ R N the Dunkl kernel E ( x , y ) is the unique solution of the system T ξ f = � ξ, y � f , f ( 0 ) = 1 . In particular, T j , x E ( x , y ) = T e j , x E ( x , y ) = y j E ( x , y ) . E ( x , y ) is a generalization of exp( � x , y � ) . Dunkl transform =generalization of Fourier transform The Dunkl transform is defined on L 1 ( dw ) by � F f ( ξ ) = c − 1 R N f ( x ) E ( x , − i ξ ) dw ( x ) . k A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 16 / 43
1. Introduction Fourier analysis in the rational Dunkl setting 2. Dunkl translations 3. Semigroups of operators Radial case - heat semigroup associated with the Dunkl Laplacian Nonradial cases 4. Idea of the proofs Convolution with radial function Support of τ x f ( −· ) A. Hejna (IM UWr.) Dunkl semigroups Będlewo, 21.05.2019 17 / 43
Recommend
More recommend