Nuclear states and spectra in holographic QCD Yoshinori Matsuo Osaka University Based on arXiv:1807.11352 with Koji Hashimoto (Osaka U.), Takeshi Morita (Shizuoka U.) Aug 19, 2019@Strings and Fields 2019
Introduction Baryons in Sakai-Sugimoto model D- branes (D4โ) wrapping color D -branes (D4) ๐ (radial direction) and ๐ 4 ( ๐ 1 โฏ ๐ 4 ) ๐ฆ 5 โฏ ๐ฆ 9 D4 (at ๐ = 0 ) D4โ on ๐ 4 ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐พ ๐ ๐พ ๐ ๐พ ๐ ๐พ ๐ ๐ฝ โ โ โ โ โ D4 โ โ โ โ โ โ โ โ โ D8 โ โ โ โ โ D4โ D4 Background geometry (holography) ๐ 4 Integrate out Effective theory on D8 Effective theory of mesons D4โ in D8 effective theory Instanton on D8 Skyrmion Effective fields on D4โ ADHM data of instantons
Introduction Baryons in holographic QCD solitonic D4-brane geometry 3 3 ๐๐ 2 ๐ 2 ๐ 2 ๐๐ก 2 = โ๐๐ข 2 + ๐๐ฆ 2 + ๐ ๐ ๐๐ฆ 4 2 + ๐ ๐ + ๐ 2 ๐ฮฉ 4 2 ๐ ๐ Anti-periodic b.c. for ๐ฆ 4 D8-brane Baryon D4-brane A similar factor to BH ๐(๐) Geometry ends at some ๐ Baryon is located near the tip of geomtry Nuclear matrix model Matrix model of Baryon vertex (D4-brane) with bosonic field of D4-D8 open string near the tip of solitonic (color) D4-brane background
แถ Nuclear matrix model Action for ๐ต baryons [Hashimoto-Iizuka- Yi,โ10] ๐ = ๐ 0 + ๐ ๐ เถฑ๐๐ข tr๐ต ๐ข ๐ 0 = เถฑ ๐๐ข tr แ1 2 ๐ธ ๐ข ๐ ๐ฝ 2 + 1 ๐ฝ๐ โ 1 2 ๐ 2 เดฅ ๐ฅ แถ ๐ฝ๐ ๐ฅ แถ ๐ฝ๐ ๐ฅ แถ 2 ๐ธ ๐ข เดฅ ๐ธ ๐ข ๐ฅ แถ ๐ฝ๐ + 1 4๐ ๐ธ ๐ฝ 2 + ๐ธ ๐ฝ 2๐๐ ๐ฝ๐พ๐ฟ ๐ ๐พ ๐ ๐ฟ + เดฅ ๐ฝ๐ ๐ ๐ฝ แถ๐พ ๐ฅ แถ ๐ฅ แถ แ ๐พ๐ ๐ฝ ๐ธ ๐ข = ๐ ๐ข โ ๐๐ต ๐ข : covariant derivative ๐ ๐ฝ : D4-D4 scalar ๐ต ร ๐ต matrix Diagonal comp.: position of D-brane ( = baryon) Off-diagonal: interaction between D-branes ๐ฅ ( เดฅ ๐ฅ ): D4-D8 scalar carries charges of quarks (spin, flavor, baryon number)
แถ แถ แถ แถ แถ ๐ต ๐ข : gauge field (baryon ๐๐(๐ต) ) Non-dynamical field EOM gives constraints 0 = ๐๐ = ๐๐ 0 โ ๐ ๐ ๐ = ๐ ๐ ๐ต โ ๐ ๐ ๐ ๐๐ต ๐ข ๐๐ต ๐ข Eigenstates of Hamiltonian must be ๐ ๐๐ ๐ต = 0 Singlet in baryon ๐๐(๐ต) symmetry Baryon (quark) number must be ๐ ๐ ๐ต ๐ ๐ 1 ๐ถ = ๐ ๐ ๐ต ๐ : perturbation Perturbation around harmonic potential ๐ผ = ๐ผ 0 + ๐ ๐ผ 0 = 1 2 tr ฮ I 2 + 1 2 ๐ 2 tr ๐ ๐ฝ 2 + 1 ๐ฝ๐ + 1 ๐ ๐ ๐ 2 ๐ 2 เดฅ ๐ ๐ฝ๐ ๐ฅ แถ 2 เดค ๐ แถ ๐ฅ ๐ ๐ฝ๐ ๐ฝ๐ ๐ = โ 1 2 ๐ 2 ๐ ๐ฝ 2 โ 2๐ ๐ ๐ฝ , ๐ ๐พ 2 2 แถ๐พ ๐ข ๐ท ๐ + ๐ เดฅ ๐ต๐ถ เดฅ ๐ ๐ฅ แถ ๐ฝ๐ ๐ ๐ฝ ๐ฝ๐ ๐ ๐ฝ ๐พ ๐ ๐ถ แถ๐พ ๐ฅ แถ โ4๐๐๐ ๐ฝ๐พ๐ฟ ๐ ๐ต ๐ฟ ๐ ๐ฅ แถ ๐ฅ ๐ ๐ท ๐ ๐พ๐ ๐ฝ ๐ฝ ๐พ๐
Ground state and constraint Harmonic oscillators of ๐ ๐ฝ , ๐ฅ and เดฅ 0-th order Hamiltonian ๐ผ 0 ๐ฅ . Constraint 1: baryon ๐(1) charge must be ๐ ๐ ๐ต ๐ ๐ฝ : 0 Baryon ๐ 1 charges ๐ฅ : 1 ๐ฅ : โ1 เดฅ Constraint for excitation of harmonic oscillators Number of ๐ฅ โ Number of เดฅ ๐ฅ = ๐ ๐ ๐ต Lowest energy state Smallest number of excitations Number of ๐ฅ = ๐ ๐ ๐ต Number of เดฅ ๐ฅ = 0 Constraint 2: physical state must be singlet of baryon ๐๐(๐ต) Physical ground state for ๐ต โค 2๐ ๐ ๐ 1 โฏ ๐ฅ แถ ๐ ๐ต ร โฏ ร ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ ๐ 1 โฏ ๐ฅ ๐ ๐ต ๐ 0 = ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ แถ 0 ๐ฝ 1 ๐ 1 ๐ฝ ๐ต ๐ ๐ต ๐ ๐ of ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ ๐ 1 โฏ ๐ฅ ๐ ๐ต ๐ฅ ๐ : raising operator of oscillator 0 : ground state of harmonic oscillators
Physical ground state for ๐ต โค 2๐ ๐ ๐ 1 โฏ ๐ฅ แถ ๐ ๐ต ร โฏ ร ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ ๐ 1 โฏ ๐ฅ ๐ ๐ต ๐ 0 = ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ แถ 0 ๐ฝ 1 ๐ 1 ๐ฝ ๐ต ๐ ๐ต ๐ ๐ of ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ ๐ 1 โฏ ๐ฅ ๐ ๐ต Only 2 ร ๐ ๐ of different ๐ฅ แถ ๐ฝ๐ : 2 different spins, ๐ ๐ different flavors ๐ ) of ๐ฅ ๐ cannot form antisymmetric combination ๐ต (> 2๐ construct different operator by using ๐ ๐ฝ : ๐ ๐ฅ ๐ , ๐ ๐ฝ ๐ฅ ๐ = ๐ ๐ฝ ๐ ๐ฝ ๐ ๐พ ๐ ๐ฟ ๐ฅ ๐ , ๐ ๐ฝ ๐ ๐พ ๐ฅ ๐ , โฏ ๐ Physical ground state for ๐ต > 2๐ ๐ ๐ 2๐๐ ๐ ๐ฝ ๐ฅ โฏ ๐ ๐พ ๐ฅ โฏ ๐ ๐ฟ โฏ ๐ ๐ ๐ฅ ๐ ๐ต ๐ 0 = ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ ๐ 1 โฏ ๐ฅ ๐ 2๐ ๐ ๐๐ฅ โฏ ๐ โฏ ๐๐ฅ ๐ ๐ต ] 0 ร โฏ ร [๐ ๐ 1 โฏ๐ ๐ต ๐ฅ ๐ 1 โฏ ๐ฅ ๐ ๐ of ๐ ๐ 1 โฏ๐ ๐ต ๐ฅ ๐ 1 โฏ (๐ ๐ฝ โฏ ๐ ๐พ )๐ฅ ๐ ๐ต
แถ Magic numbers Nuclei are stable (small energy) for some specific numbers of proton (neutron) Magic number for ๐ฃ (or ๐ ) quarks ( ๐ ๐ = 1 case for simplicity) ๐ฅ = ๐ฃ แถ ๐ฝ ๐ฝ = 1, 2 ( ๐ = 1 ) 2 of ๐ฃ (spin โ and โ ) Additional energy of ๐ ๐ฝ ๐ต = 1 ๐ 0 = ๐๐ฃ โ |0โช Magic ๐ 0 = ๐๐ฃ โ ๐ฃ โ |0โช ๐ต = 2 number ๐ 0 = ๐๐ฃ โ ๐ฃ โ ๐ฃ โ 0 = 0 ๐ 0 = ๐๐ฃ๐ฃ ๐๐ฃ |0โช ๐ต = 3 ๐ต = 4 ๐ 0 = ๐๐ฃ๐ฃ(๐ฃ๐)(๐ฃ๐)|0โช ๐ ๐ฝ ๐ฝ = 1, 2, 3 โฎ โฎ Magic ๐ 0 = ๐๐ฃ๐ฃ ๐๐ฃ โฏ ๐๐ฃ |0โช ๐ต = 8 number 2 ร 3 = 6 of ๐๐ฃ 6 of ๐๐ฃ ๐ต = 9 ๐ 0 = ๐๐ฃ๐ฃ ๐๐ฃ โฏ ๐๐ฃ (๐๐ฃ) 0 = 0 6 of ๐๐ฃ ๐ 0 = ๐๐ฃ๐ฃ ๐๐ฃ โฏ ๐๐ฃ (๐๐๐ฃ) 0 ๐ต = 9 6 of ๐๐ฃ
Magic numbers Magic number for either proton or neutron ( ๐ ๐ = 3 ) ๐ ๐ = 2 Both quarks and nucleons have isospin ๐ฝ = 1/2 Example: ( ๐ ๐ = 8 , ๐ ๐ = 2 ) ๐ 0 = ๐๐ ๐ฃ๐ฃ(๐๐ฃ)(๐๐ฃ)(๐๐ฃ)(๐๐ฃ)(๐๐ฃ)(๐๐ฃ) 3 sets of anti-sym. ร ๐๐ ๐ฃ๐ฃ(๐๐ฃ)(๐๐ฃ)(๐๐ฃ)(๐๐ฃ)(๐๐ฃ)(๐๐ฃ) combinations ๐๐ฅ โฏ ๐๐ฅ ร ๐ฃ๐ฃ ๐๐ ๐๐ ๐๐ ๐๐ ๐๐ ๐๐ ๐๐ 0 2 neutrons 8 protons Proton and neutron Quark configurations ? configurations Example: ๐ ๐ฃ = 6 , ๐ ๐ = 3 ; same to 3 protons (3 ๐ โs cannot be in ground state) ๐ 0 = ๐ฃ๐ฃ ๐ ๐ฃ๐ฃ ๐ ๐ฃ๐ฃ ๐ 0 State without ๐ excitation is possible corresponds to nucleus with ฮ will be heavier if 1 st order perturbation ๐ is taken into account
แถ First order perturbation Energy at first order = expectation value of ๐ผ for ๐ 0 ๐น = ๐ 0 ๐ผ ๐ 0 = ๐น 0 + ๐ 0 ๐|๐ 0 โช ๐น 0 = ๐ ๐ ๐ต๐ Energy at 0-th order ๐ for ๐ ๐ ๐ต excitations of ๐ฅ Linear order correction 2 ๐ฝ๐ ๐ ๐ฝ No ๐ ๐ฝ excitation for ๐ต โค 2๐ แถ๐พ ๐ฅ แถ ๐ฅ แถ ๐ = ๐ เดฅ ๐ ๐พ๐ ๐ฝ No excitations of ๐ ๐ฝ or เดฅ ๐ฅ (only ๐ฅ excitations) 2๐ต โ ๐ ๐ = 4๐ ๐ + ๐ ๐ 2 ๐ 2 ๐ท ๐ ๐ฅ ๐ 2 ๐ ๐ ๐ต ๐ท ๐ : quadratic Casimir of flavor ๐๐(๐ ๐ ) ๐ ๐ฅ : Number of excitations of ๐ฅ Smaller flavor charge more stable
Allowed states ( ๐ ๐ = 2 ) ๐ฅ แถ ๐ฝ๐ : raising operator of ๐ฅ แถ ๐ฝ๐ ๐ต = 1 and ๐ ๐ = 3 ๐ 0 = ๐ฅ แถ ๐ฝ 1 ๐ 1 ๐ฅ แถ ๐ฝ 2 ๐ 2 ๐ฅ แถ ๐ฝ 3 ๐ 3 0 (No baryon index) ๐ฅ are bosonic ( = symmetric) Spin ๐พ and isospin ๐ฝ are in same rep. 1 2 , 1 2 , 3 3 ๐พ, ๐ฝ = ๐พ, ๐ฝ = or 2 2 proton or neutron ฮ Mass ๐น = 3๐ + 4๐ ๐ 2 ๐ฝ(๐ฝ + 1) proton and neutron have smaller mass than ฮ
Allowed states ( ๐ ๐ = 2 ) ๐ต = 2 and ๐ ๐ = 1 ๐ 1 ๐ฅ แถ ๐ 2 ๐ 0 = ๐ ๐ 1 ๐ 2 ๐ฅ แถ 0 ๐ฝ 1 ๐ 1 ๐ฝ 2 ๐ 2 spin antisymmetric or antisymmetric symmetric ๐ฅ are antisymmetric isospin is symmetric ๐พ, ๐ฝ = 1,0 ๐พ, ๐ฝ = 0,1 stable ๐ต = 2 and ๐ ๐ = 3 Symmetric combination of 3 sets of ๐ต = 2 and ๐ ๐ = 1 ๐พ, ๐ฝ = 1,0 ๐พ, ๐ฝ = 3,0 ๐พ, ๐ฝ = 1,2 ๐พ, ๐ฝ = 0,1 ๐พ, ๐ฝ = 0,3 ๐พ, ๐ฝ = 2,1 Most stable states ๐พ, ๐ฝ = 1,0 ๐พ, ๐ฝ = 3,0 Dibaryon ๐ธ 03 Deuteron
แถ แถ แถ แถ แถ Hyperon ๐ฃ , ๐ , ๐ก quarks ๐ ๐ = 3 ๐ก quark has larger mass Put larger mass for ๐ฅ (๐ก) = ๐ฅ ๐=3 by hand 3 2 ๐ 2 เดฅ ๐ + ๐ ๐ ๐ 2 เดฅ 2 (เดฅ ๐ ๐ ๐ฝ๐ ๐ฅ แถ ๐ฝ (๐ฅ (๐ก) ) แถ ๐ฝ๐ ๐ฅ แถ ๐ฅ ๐ ๐ฅ (๐ก) ) ๐ ๐ฅ ๐ เท เท ๐ฝ๐ ๐ฝ ๐ฝ๐ ๐=1 ๐=1 Number of ๐ฅ ๐ก = ๐ฅ ๐=3 in |๐ 0 โช Number of ๐ก quarks in nucleus 2 ๐ฝ๐ ๐ ๐ฝ แถ๐พ ๐ฅ แถ ๐ Assumption: no ๐๐(3) breaking effect in ๐ = ๐ เดฅ ๐ฅ ๐ ๐ฝ ๐พ๐ Effect of mass in raising and lowering operators ๐ โ : raising (creation) operator of ๐ฅ ๐ฅ = 1 ๐ โ + เดค ๐ ๐ ๐ : lowering (annihilation) operator of เดฅ เดค ๐ฅ
Recommend
More recommend