nuclear states and spectra
play

Nuclear states and spectra in holographic QCD Yoshinori Matsuo - PowerPoint PPT Presentation

Nuclear states and spectra in holographic QCD Yoshinori Matsuo Osaka University Based on arXiv:1807.11352 with Koji Hashimoto (Osaka U.), Takeshi Morita (Shizuoka U.) Aug 19, 2019@Strings and Fields 2019 Introduction Baryons in


  1. Nuclear states and spectra in holographic QCD Yoshinori Matsuo Osaka University Based on arXiv:1807.11352 with Koji Hashimoto (Osaka U.), Takeshi Morita (Shizuoka U.) Aug 19, 2019@Strings and Fields 2019

  2. Introduction Baryons in Sakai-Sugimoto model D- branes (D4โ€™) wrapping color D -branes (D4) ๐‘‰ (radial direction) and ๐‘‡ 4 ( ๐œ„ 1 โ‹ฏ ๐œ„ 4 ) ๐‘ฆ 5 โ‹ฏ ๐‘ฆ 9 D4 (at ๐‘‰ = 0 ) D4โ€™ on ๐‘‡ 4 ๐’š ๐Ÿ ๐’š ๐Ÿ ๐’š ๐Ÿ‘ ๐’š ๐Ÿ’ ๐’š ๐Ÿ“ ๐œพ ๐Ÿ ๐œพ ๐Ÿ‘ ๐œพ ๐Ÿ’ ๐œพ ๐Ÿ“ ๐‘ฝ โœ“ โœ“ โœ“ โœ“ โœ“ D4 โœ“ โœ“ โœ“ โœ“ โœ“ โœ“ โœ“ โœ“ โœ“ D8 โœ“ โœ“ โœ“ โœ“ โœ“ D4โ€™ D4 Background geometry (holography) ๐‘‡ 4 Integrate out Effective theory on D8 Effective theory of mesons D4โ€™ in D8 effective theory Instanton on D8 Skyrmion Effective fields on D4โ€™ ADHM data of instantons

  3. Introduction Baryons in holographic QCD solitonic D4-brane geometry 3 3 ๐‘’๐‘‰ 2 ๐‘‰ 2 ๐‘† 2 ๐‘’๐‘ก 2 = โˆ’๐‘’๐‘ข 2 + ๐‘’๐‘ฆ 2 + ๐‘” ๐‘‰ ๐‘’๐‘ฆ 4 2 + ๐‘” ๐‘‰ + ๐‘‰ 2 ๐‘’ฮฉ 4 2 ๐‘† ๐‘‰ Anti-periodic b.c. for ๐‘ฆ 4 D8-brane Baryon D4-brane A similar factor to BH ๐‘”(๐‘‰) Geometry ends at some ๐‘‰ Baryon is located near the tip of geomtry Nuclear matrix model Matrix model of Baryon vertex (D4-brane) with bosonic field of D4-D8 open string near the tip of solitonic (color) D4-brane background

  4. แˆถ Nuclear matrix model Action for ๐ต baryons [Hashimoto-Iizuka- Yi,โ€™10] ๐‘‡ = ๐‘‡ 0 + ๐‘‚ ๐‘‘ เถฑ๐‘’๐‘ข tr๐ต ๐‘ข ๐‘‡ 0 = เถฑ ๐‘’๐‘ข tr แ‰ˆ1 2 ๐ธ ๐‘ข ๐‘Œ ๐ฝ 2 + 1 ๐›ฝ๐‘— โˆ’ 1 2 ๐‘ 2 เดฅ ๐‘ฅ แˆถ ๐›ฝ๐‘— ๐‘ฅ แˆถ ๐›ฝ๐‘— ๐‘ฅ แˆถ 2 ๐ธ ๐‘ข เดฅ ๐ธ ๐‘ข ๐‘ฅ แˆถ ๐›ฝ๐‘— + 1 4๐œ‡ ๐ธ ๐ฝ 2 + ๐ธ ๐ฝ 2๐‘—๐œ— ๐ฝ๐พ๐ฟ ๐‘Œ ๐พ ๐‘Œ ๐ฟ + เดฅ ๐›ฝ๐‘— ๐œ ๐ฝ แˆถ๐›พ ๐‘ฅ แˆถ ๐‘ฅ แˆถ แ‰‰ ๐›พ๐‘— ๐›ฝ ๐ธ ๐‘ข = ๐œ– ๐‘ข โˆ’ ๐‘—๐ต ๐‘ข : covariant derivative ๐‘Œ ๐ฝ : D4-D4 scalar ๐ต ร— ๐ต matrix Diagonal comp.: position of D-brane ( = baryon) Off-diagonal: interaction between D-branes ๐‘ฅ ( เดฅ ๐‘ฅ ): D4-D8 scalar carries charges of quarks (spin, flavor, baryon number)

  5. แˆถ แˆถ แˆถ แˆถ แˆถ ๐ต ๐‘ข : gauge field (baryon ๐‘‡๐‘‰(๐ต) ) Non-dynamical field EOM gives constraints 0 = ๐œ€๐‘‡ = ๐œ€๐‘‡ 0 โˆ’ ๐‘‚ ๐‘‘ ๐• = ๐‘… ๐‘‰ ๐ต โˆ’ ๐‘‚ ๐‘‘ ๐• ๐œ€๐ต ๐‘ข ๐œ€๐ต ๐‘ข Eigenstates of Hamiltonian must be ๐‘… ๐‘‡๐‘‰ ๐ต = 0 Singlet in baryon ๐‘‡๐‘‰(๐ต) symmetry Baryon (quark) number must be ๐‘‚ ๐‘‘ ๐ต ๐‘… ๐‘‰ 1 ๐ถ = ๐‘‚ ๐‘‘ ๐ต ๐‘Š : perturbation Perturbation around harmonic potential ๐ผ = ๐ผ 0 + ๐‘Š ๐ผ 0 = 1 2 tr ฮ  I 2 + 1 2 ๐‘› 2 tr ๐‘Œ ๐ฝ 2 + 1 ๐›ฝ๐‘— + 1 ๐‘ ๐œŒ ๐‘ 2 ๐‘ 2 เดฅ ๐‘ ๐›ฝ๐‘— ๐‘ฅ แˆถ 2 เดค ๐œŒ แˆถ ๐‘ฅ ๐‘ ๐›ฝ๐‘— ๐›ฝ๐‘— ๐‘Š = โˆ’ 1 2 ๐‘› 2 ๐‘Œ ๐ฝ 2 โˆ’ 2๐œ‡ ๐‘Œ ๐ฝ , ๐‘Œ ๐พ 2 2 แˆถ๐›พ ๐‘ข ๐ท ๐‘ + ๐œ‡ เดฅ ๐ต๐ถ เดฅ ๐‘ ๐‘ฅ แˆถ ๐›ฝ๐‘— ๐œ ๐ฝ ๐›ฝ๐‘— ๐œ ๐ฝ ๐พ ๐‘Œ ๐ถ แˆถ๐›พ ๐‘ฅ แˆถ โˆ’4๐‘—๐œ‡๐œ— ๐ฝ๐พ๐ฟ ๐‘Œ ๐ต ๐ฟ ๐‘” ๐‘ฅ แˆถ ๐‘ฅ ๐‘ ๐ท ๐‘ ๐›พ๐‘— ๐›ฝ ๐›ฝ ๐›พ๐‘—

  6. Ground state and constraint Harmonic oscillators of ๐‘Œ ๐ฝ , ๐‘ฅ and เดฅ 0-th order Hamiltonian ๐ผ 0 ๐‘ฅ . Constraint 1: baryon ๐‘‰(1) charge must be ๐‘‚ ๐‘‘ ๐ต ๐‘Œ ๐ฝ : 0 Baryon ๐‘‰ 1 charges ๐‘ฅ : 1 ๐‘ฅ : โˆ’1 เดฅ Constraint for excitation of harmonic oscillators Number of ๐‘ฅ โˆ’ Number of เดฅ ๐‘ฅ = ๐‘‚ ๐‘‘ ๐ต Lowest energy state Smallest number of excitations Number of ๐‘ฅ = ๐‘‚ ๐‘‘ ๐ต Number of เดฅ ๐‘ฅ = 0 Constraint 2: physical state must be singlet of baryon ๐‘‡๐‘‰(๐ต) Physical ground state for ๐ต โ‰ค 2๐‘‚ ๐‘” ๐‘ 1 โ‹ฏ ๐‘ฅ แˆถ ๐‘ ๐ต ร— โ‹ฏ ร— ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ ๐‘ 1 โ‹ฏ ๐‘ฅ ๐‘ ๐ต ๐œ” 0 = ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ แˆถ 0 ๐›ฝ 1 ๐‘— 1 ๐›ฝ ๐ต ๐‘— ๐ต ๐‘‚ ๐‘‘ of ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ ๐‘ 1 โ‹ฏ ๐‘ฅ ๐‘ ๐ต ๐‘ฅ ๐‘ : raising operator of oscillator 0 : ground state of harmonic oscillators

  7. Physical ground state for ๐ต โ‰ค 2๐‘‚ ๐‘” ๐‘ 1 โ‹ฏ ๐‘ฅ แˆถ ๐‘ ๐ต ร— โ‹ฏ ร— ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ ๐‘ 1 โ‹ฏ ๐‘ฅ ๐‘ ๐ต ๐œ” 0 = ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ แˆถ 0 ๐›ฝ 1 ๐‘— 1 ๐›ฝ ๐ต ๐‘— ๐ต ๐‘‚ ๐‘‘ of ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ ๐‘ 1 โ‹ฏ ๐‘ฅ ๐‘ ๐ต Only 2 ร— ๐‘‚ ๐‘” of different ๐‘ฅ แˆถ ๐›ฝ๐‘— : 2 different spins, ๐‘‚ ๐‘” different flavors ๐‘” ) of ๐‘ฅ ๐‘ cannot form antisymmetric combination ๐ต (> 2๐‘‚ construct different operator by using ๐‘Œ ๐ฝ : ๐‘ ๐‘ฅ ๐‘ , ๐‘Œ ๐ฝ ๐‘ฅ ๐‘ = ๐‘Œ ๐ฝ ๐‘Œ ๐ฝ ๐‘Œ ๐พ ๐‘Œ ๐ฟ ๐‘ฅ ๐‘ , ๐‘Œ ๐ฝ ๐‘Œ ๐พ ๐‘ฅ ๐‘ , โ‹ฏ ๐‘ Physical ground state for ๐ต > 2๐‘‚ ๐‘” ๐‘ 2๐‘‚๐‘” ๐‘Œ ๐ฝ ๐‘ฅ โ‹ฏ ๐‘Œ ๐พ ๐‘ฅ โ‹ฏ ๐‘Œ ๐ฟ โ‹ฏ ๐‘Œ ๐‘€ ๐‘ฅ ๐‘ ๐ต ๐œ” 0 = ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ ๐‘ 1 โ‹ฏ ๐‘ฅ ๐‘ 2๐‘‚ ๐‘” ๐‘Œ๐‘ฅ โ‹ฏ ๐‘Œ โ‹ฏ ๐‘Œ๐‘ฅ ๐‘ ๐ต ] 0 ร— โ‹ฏ ร— [๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ ๐‘ 1 โ‹ฏ ๐‘ฅ ๐‘‚ ๐‘‘ of ๐œ— ๐‘ 1 โ‹ฏ๐‘ ๐ต ๐‘ฅ ๐‘ 1 โ‹ฏ (๐‘Œ ๐ฝ โ‹ฏ ๐‘Œ ๐พ )๐‘ฅ ๐‘ ๐ต

  8. แˆถ Magic numbers Nuclei are stable (small energy) for some specific numbers of proton (neutron) Magic number for ๐‘ฃ (or ๐‘’ ) quarks ( ๐‘‚ ๐‘‘ = 1 case for simplicity) ๐‘ฅ = ๐‘ฃ แˆถ ๐›ฝ ๐›ฝ = 1, 2 ( ๐‘— = 1 ) 2 of ๐‘ฃ (spin โ†‘ and โ†“ ) Additional energy of ๐‘Œ ๐ฝ ๐ต = 1 ๐œ” 0 = ๐œ—๐‘ฃ โ†‘ |0โŒช Magic ๐œ” 0 = ๐œ—๐‘ฃ โ†‘ ๐‘ฃ โ†“ |0โŒช ๐ต = 2 number ๐œ” 0 = ๐œ—๐‘ฃ โ†‘ ๐‘ฃ โ†“ ๐‘ฃ โ†‘ 0 = 0 ๐œ” 0 = ๐œ—๐‘ฃ๐‘ฃ ๐‘Œ๐‘ฃ |0โŒช ๐ต = 3 ๐ต = 4 ๐œ” 0 = ๐œ—๐‘ฃ๐‘ฃ(๐‘ฃ๐‘Œ)(๐‘ฃ๐‘Œ)|0โŒช ๐‘Œ ๐ฝ ๐ฝ = 1, 2, 3 โ‹ฎ โ‹ฎ Magic ๐œ” 0 = ๐œ—๐‘ฃ๐‘ฃ ๐‘Œ๐‘ฃ โ‹ฏ ๐‘Œ๐‘ฃ |0โŒช ๐ต = 8 number 2 ร— 3 = 6 of ๐‘Œ๐‘ฃ 6 of ๐‘Œ๐‘ฃ ๐ต = 9 ๐œ” 0 = ๐œ—๐‘ฃ๐‘ฃ ๐‘Œ๐‘ฃ โ‹ฏ ๐‘Œ๐‘ฃ (๐‘Œ๐‘ฃ) 0 = 0 6 of ๐‘Œ๐‘ฃ ๐œ” 0 = ๐œ—๐‘ฃ๐‘ฃ ๐‘Œ๐‘ฃ โ‹ฏ ๐‘Œ๐‘ฃ (๐‘Œ๐‘Œ๐‘ฃ) 0 ๐ต = 9 6 of ๐‘Œ๐‘ฃ

  9. Magic numbers Magic number for either proton or neutron ( ๐‘‚ ๐‘‘ = 3 ) ๐‘‚ ๐‘” = 2 Both quarks and nucleons have isospin ๐ฝ = 1/2 Example: ( ๐‘‚ ๐‘ž = 8 , ๐‘‚ ๐‘œ = 2 ) ๐œ” 0 = ๐‘’๐‘’ ๐‘ฃ๐‘ฃ(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ) 3 sets of anti-sym. ร— ๐‘’๐‘’ ๐‘ฃ๐‘ฃ(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ)(๐‘Œ๐‘ฃ) combinations ๐œ—๐‘ฅ โ‹ฏ ๐‘Œ๐‘ฅ ร— ๐‘ฃ๐‘ฃ ๐‘’๐‘’ ๐‘Œ๐‘’ ๐‘Œ๐‘’ ๐‘Œ๐‘’ ๐‘Œ๐‘’ ๐‘Œ๐‘’ ๐‘Œ๐‘’ 0 2 neutrons 8 protons Proton and neutron Quark configurations ? configurations Example: ๐‘‚ ๐‘ฃ = 6 , ๐‘‚ ๐‘’ = 3 ; same to 3 protons (3 ๐‘ž โ€™s cannot be in ground state) ๐œ” 0 = ๐‘ฃ๐‘ฃ ๐‘’ ๐‘ฃ๐‘ฃ ๐‘’ ๐‘ฃ๐‘ฃ ๐‘’ 0 State without ๐‘Œ excitation is possible corresponds to nucleus with ฮ” will be heavier if 1 st order perturbation ๐‘Š is taken into account

  10. แˆถ First order perturbation Energy at first order = expectation value of ๐ผ for ๐œ” 0 ๐น = ๐œ” 0 ๐ผ ๐œ” 0 = ๐น 0 + ๐œ” 0 ๐‘Š|๐œ” 0 โŒช ๐น 0 = ๐‘‚ ๐‘‘ ๐ต๐‘ Energy at 0-th order ๐‘Š for ๐‘‚ ๐‘‘ ๐ต excitations of ๐‘ฅ Linear order correction 2 ๐›ฝ๐‘— ๐œ ๐ฝ No ๐‘Œ ๐ฝ excitation for ๐ต โ‰ค 2๐‘‚ แˆถ๐›พ ๐‘ฅ แˆถ ๐‘ฅ แˆถ ๐‘Š = ๐œ‡ เดฅ ๐‘” ๐›พ๐‘— ๐›ฝ No excitations of ๐‘Œ ๐ฝ or เดฅ ๐‘ฅ (only ๐‘ฅ excitations) 2๐ต โˆ’ ๐‘‚ ๐‘Š = 4๐œ‡ ๐‘” + ๐œ‡ ๐‘” 2 ๐‘ 2 ๐ท ๐‘‚ ๐‘ฅ ๐‘ 2 ๐‘‚ ๐‘” ๐ต ๐ท ๐‘” : quadratic Casimir of flavor ๐‘‡๐‘‰(๐‘‚ ๐‘” ) ๐‘‚ ๐‘ฅ : Number of excitations of ๐‘ฅ Smaller flavor charge more stable

  11. Allowed states ( ๐‘‚ ๐‘” = 2 ) ๐‘ฅ แˆถ ๐›ฝ๐‘— : raising operator of ๐‘ฅ แˆถ ๐›ฝ๐‘— ๐ต = 1 and ๐‘‚ ๐‘‘ = 3 ๐œ” 0 = ๐‘ฅ แˆถ ๐›ฝ 1 ๐‘— 1 ๐‘ฅ แˆถ ๐›ฝ 2 ๐‘— 2 ๐‘ฅ แˆถ ๐›ฝ 3 ๐‘— 3 0 (No baryon index) ๐‘ฅ are bosonic ( = symmetric) Spin ๐พ and isospin ๐ฝ are in same rep. 1 2 , 1 2 , 3 3 ๐พ, ๐ฝ = ๐พ, ๐ฝ = or 2 2 proton or neutron ฮ” Mass ๐น = 3๐‘ + 4๐œ‡ ๐‘ 2 ๐ฝ(๐ฝ + 1) proton and neutron have smaller mass than ฮ”

  12. Allowed states ( ๐‘‚ ๐‘” = 2 ) ๐ต = 2 and ๐‘‚ ๐‘‘ = 1 ๐‘ 1 ๐‘ฅ แˆถ ๐‘ 2 ๐œ” 0 = ๐œ— ๐‘ 1 ๐‘ 2 ๐‘ฅ แˆถ 0 ๐›ฝ 1 ๐‘— 1 ๐›ฝ 2 ๐‘— 2 spin antisymmetric or antisymmetric symmetric ๐‘ฅ are antisymmetric isospin is symmetric ๐พ, ๐ฝ = 1,0 ๐พ, ๐ฝ = 0,1 stable ๐ต = 2 and ๐‘‚ ๐‘‘ = 3 Symmetric combination of 3 sets of ๐ต = 2 and ๐‘‚ ๐‘‘ = 1 ๐พ, ๐ฝ = 1,0 ๐พ, ๐ฝ = 3,0 ๐พ, ๐ฝ = 1,2 ๐พ, ๐ฝ = 0,1 ๐พ, ๐ฝ = 0,3 ๐พ, ๐ฝ = 2,1 Most stable states ๐พ, ๐ฝ = 1,0 ๐พ, ๐ฝ = 3,0 Dibaryon ๐ธ 03 Deuteron

  13. แˆถ แˆถ แˆถ แˆถ แˆถ Hyperon ๐‘ฃ , ๐‘’ , ๐‘ก quarks ๐‘‚ ๐‘” = 3 ๐‘ก quark has larger mass Put larger mass for ๐‘ฅ (๐‘ก) = ๐‘ฅ ๐‘—=3 by hand 3 2 ๐‘ 2 เดฅ ๐‘ + ๐‘ ๐‘‡ ๐‘ 2 เดฅ 2 (เดฅ ๐‘ ๐‘ ๐›ฝ๐‘— ๐‘ฅ แˆถ ๐›ฝ (๐‘ฅ (๐‘ก) ) แˆถ ๐›ฝ๐‘— ๐‘ฅ แˆถ ๐‘ฅ ๐‘ ๐‘ฅ (๐‘ก) ) ๐‘ ๐‘ฅ ๐‘ เท เท ๐›ฝ๐‘— ๐›ฝ ๐›ฝ๐‘— ๐‘—=1 ๐‘—=1 Number of ๐‘ฅ ๐‘ก = ๐‘ฅ ๐‘—=3 in |๐œ” 0 โŒช Number of ๐‘ก quarks in nucleus 2 ๐›ฝ๐‘— ๐œ ๐ฝ แˆถ๐›พ ๐‘ฅ แˆถ ๐‘ Assumption: no ๐‘‡๐‘‰(3) breaking effect in ๐‘Š = ๐œ‡ เดฅ ๐‘ฅ ๐‘ ๐›ฝ ๐›พ๐‘— Effect of mass in raising and lowering operators ๐‘ โ€  : raising (creation) operator of ๐‘ฅ ๐‘ฅ = 1 ๐‘ โ€  + เดค ๐‘ ๐‘ ๐‘ : lowering (annihilation) operator of เดฅ เดค ๐‘ฅ

Recommend


More recommend