nuclear corrections from the eft perspective
play

Nuclear Corrections from the EFT Perspective Saori Pastore Current - PowerPoint PPT Presentation

Nuclear Corrections from the EFT Perspective Saori Pastore Current and Future Status of the First-Row CKM Unitarity ACFI, May 2019 bla Open Questions in Fundamental Symmetries and Neutrino Physics Majorana Neutrinos, Neutrinos Mass Hierarchy,


  1. Nuclear Corrections from the EFT Perspective Saori Pastore Current and Future Status of the First-Row CKM Unitarity ACFI, May 2019 bla Open Questions in Fundamental Symmetries and Neutrino Physics Majorana Neutrinos, Neutrinos Mass Hierarchy, CP-Violation in Neutrino Sector, Dark Matter with Carlson & Gandolfi (LANL) & Schiavilla (ODU+JLab) Piarulli (WashU) & Baroni (USC) & Pieper & Wiringa (ANL) Girlanda (Salento U.) & Marcucci & Viviani & Kievsky (Pisa U/INFN) and with Mereghetti & Dekens & Cirigliano & Graesser (LANL) de Vries (Nikhef) & van Kolck (AU+CNRS/IN2P3) 1 / 24

  2. Towards a coherent and unified picture of neutrino-nucleus interactions * An accurate understanding of nuclear structure and dynamics is required to disentangle new physics from nuclear effects * * ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays * ω ∼ few MeV, q ∼ 10 2 MeV: Neutrinoless ββ -decays * ω � tens MeV: Nuclear Rates for Astrophysics * ω ∼ 10 2 MeV: Accelerator neutrinos, ν -nucleus scattering 2 / 24

  3. Nuclear Interactions The nucleus is made of A non-relativistic interacting nucleons and its energy is A υ ij + ∑ ∑ t i + ∑ H = T + V = V ijk + ... i = 1 i < j i < j < k where υ ij and V ijk are two- and three-nucleon operators based on EXPT data fitting and fitted parameters subsume underlying QCD π π π Hideki Yukawa * Contact terms: short-range 1 * One-pion-exchange: range ∼ m π 1 * Two-pion-exchange: range ∼ 2 m π Pastore et al. PRC80(2009)034004 3 / 24

  4. Quantum Monte Carlo Methods Minimize expectation value of H = T + V ij + V ijk E V = � Ψ V | H | Ψ V � ≥ E 0 � Ψ V | Ψ V � using trial function � �� � S ∏ ( 1 + U ij + ∑ ∏ | Ψ V � = U ijk ) f c ( r ij ) | Φ A ( JMTT 3 ) � i < j i < j k � = i , j Ψ V is further improved it by “filtering” out the remaining excited state contamination Ψ ( τ ) = exp [ − ( H − E 0 ) τ ] Ψ V = ∑ exp [ − ( E n − E 0 ) τ ] a n ψ n n Ψ ( τ → ∞ ) = a 0 ψ 0 * QMC: AV18+UIX / AV18+IL7; Wiringa+Schiavilla+Pieper et al. * QMC: NN(N2LO)+3N(N2LO) ( π & N ); Gerzelis+Tews+Epelbaum+Gandolfi+Lynn et al. * QMC: NN(N3LO)+3N(N2LO) ( π & N & ∆ ); Piarulli et al. Lomnitz-Adler et al. NPA361(1981)399 - Wiringa PRC43(1991)1585 - Pudliner et al. PRC56(1997)1720 - Wiringa et al. PRC62(2000)014001 Pieper et al. PRC70(2004)054325 - Carlson et al. RevModPhys87(2014)1067 4 / 24

  5. ☞ ⑤ ✤ ✣ ✥ ✢ ❝ ✜ ⑤ ✌ ☛ ✡ Energy Spectrum and Shape of Nuclei Piarulli et al. - PRL120(2018)052503 ✠ ✶ ✵ ✒ ✚ ✒ ✛ ✒ ✚ ✒✔ ☎ ✟ ✶ ✵ ✒ ✚ ✒ ✒ Lovato et al. ✒ ✓ ✔ ✕ ✖ ✗ ✘✙ ☎ ✞ PRL111(2013)092501 ✶ ✵ ❡✍ ✎ ☎ ✝ ✶ ✵ r ✟ ✏ r ✟ ✏✑ ✞ ✏ ☎ ✆ ✶ ✵ ✵ ✶ ✷ ✸ ✹ ✲ ✄ q �✁✂ ✮ 5 / 24

  6. Nuclear Currents 1b 2b A ℓ ′ ℓ ′ ∑ ρ i + ∑ ρ = ρ ij + ... , i < j i = 1 q q A ∑ j i + ∑ = j ij + ... j ℓ ℓ i = 1 i < j * Nuclear currents given by the sum of p ’s and n ’s currents, one-body currents (1b) � L p � S n � S p * Two-body currents (2b) essential to satisfy current conservation * We use Meson-Exchange Currents (MEC) or χ EFT Currents � � q · j = [ H , ρ ] = t i + υ ij + V ijk , ρ + . . . q γ N N 6 / 24

  7. Electromagnetic Currents from Chiral Effective Field Theory : j ( − 2) ∼ eQ − 2 LO NLO : j ( − 1) ∼ eQ − 1 N 2 LO : j ( − 0) ∼ eQ 0 * 3 unknown Low Energy Constants: fixed so as to reproduce d , 3 H , and 3 He magnetic moments ** also obtainable from LQCD calculations ** N 3 LO : j (1) ∼ eQ unknown LEC ′ s Pastore et al. PRC78(2008)064002 & PRC80(2009)034004 & PRC84(2011)024001 Piarulli et al. PRCC87(2013)014006 derived by Park+Min+Rho NPA596(1996)515 in CPT and by K¨ olling+Epelbaum+Krebs+Meissner PRC80(2009)045502 & PRC84(2011)054008 with UT 7 / 24

  8. Magnetic Moments of Nuclei 4 � L p 3 9 B 7 Li � S n p 9 Li � 3 H S p 2 6 Li* 10 B 1 8 Li 8 B µ ( µ N ) 2 H 6 Li 10 B* 0 GFMC(1b) 9 C GFMC(1b+2b) 9 Be 7 Be EXPT -1 n 3 He -2 -3 m.m. THEO EXP 9 C -1.35(4)(7) -1.3914(5) 9 Li 3.36(4)(8) 3.4391(6) chiral truncation error based on EE et al. error algorithm, Epelbaum, Krebs, and Meissner EPJA51(2015)53 Pastore et al. PRC87(2013)035503 8 / 24

  9. One-body magnetic densities 0.04 0.03 7 Li( 3 / 2 - ) 8 Li(2 + ) 9 Li( 3 / 2 - ) 0.02 ρ µ (r) ( µ N fm -3 ) 0.01 0.00 p L -0.01 p S n S -0.02 µ (IA) -0.03 0.03 7 Be( 3 / 2 - ) 8 B(2 + ) 9 C( 3 / 2 - ) ρ µ (r) ( µ N fm -3 ) 0.02 0.01 0.00 -0.01 -0.02 -0.03 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 r (fm) r (fm) r (fm) * one-body (IA) magnetic moment operator µ ( IA ) = µ N ∑ [( L i + g p S i )( 1 + τ i , z ) / 2 + g n S i ( 1 − τ i , z ) / 2 ] i 9 / 24

  10. ✠ ☛ ✓ ✒ ✑ ✏ ✎ ✍ ✌ ☞ ✡ ✡ ✠ ✟ ✎ ✍ ✌ ☞ ☛ ✟ ✔ ✕ ✏ ✌ ✕ ✔ ✓ ✒ ✑ ✏ ✎ ✍ ☞ ✑ ☛ ✡ ✠ ✟ ✕ ✔ ✓ ✒ Electromagnetic Decays and e -scattering off nuclei Electromagnetic Transverse Responses Electromagnetic Decay 9 Be( 5 / 2 - → 3 / 2 - ) B(E2) � ✁ � ✞ ✖✗ ✘✙ ✚ ✛ ✜ ✢✣ ✤✥ ✦ ✧ ★ ✩ ✪ ★ ✫ ✬ ✭ ✮ � ✁ � ✝ 9 Be( 5 / 2 - → 3 / 2 - ) B(M1) ✯ ✰ ✱ ✲ ✳ ✳ ✴ ✵ ✴ ✶✷ ✸ ✹ ✷ ✺ ✻✷ ✼ ✷ ✄ ☎ ✄ ✆ 8 B(3 + → 2 + ) B(M1) � ✁ � ✂ 8 B(1 + → 2 + ) B(M1) � ✁ � � � ✁ � ✞ 8 Li(3 + → 2 + ) B(M1) � ✁ � ✝ 8 Li(1 + → 2 + ) B(M1) ✄ ☎ ✄ ✆ 7 Be( 1 / 2 - → 3 / 2 - ) B(M1) � ✁ � ✂ 7 Li( 1 / 2 - → 3 / 2 - ) B(E2) � ✁ � � � ✁ � ✞ 7 Li( 1 / 2 - → 3 / 2 - ) B(M1) � ✁ � ✝ 6 Li(0 + → 1 + ) B(M1) ✄ ☎ ✄ ✆ EXPT GFMC(1b) GFMC(1b+2b) � ✁ � ✂ 0 1 2 3 � ✁ � � Ratio to experiment ✽ ✾ ✿ ❀ ❁ ❁ ❀ ❂ ❁ ❃ ❁ ❁ ❃ ❂ ❁ ❄ ❁ ❁ ❄ ❂ ❁ ❅ ❆ ❆ ❇ ❈ ❉❊ ❋ ● q = [ 300 − 750 ] MeV Lovato & Gandolfi et al. PRC91(2015)062501 & Pastore et al. PRC87(2013)035503 & PRC90(2014)024321 arXiv:1605.00248 Electromagnetic data are explained when two-body correlations and currents are accounted for! 10 / 24

  11. Neutrinos and Nuclei: Challenges and Opportunities Beta Decay Rate Neutrino-Nucleus Scattering 12 C CCQE on 8 7 6 5 2 ] -38 cm Ankowski, SF 4 Athar, LFG+RPA σ [x 10 Benhar, SF GiBUU 3 Madrid, RMF Martini, LFG+RPA Nieves, LFG+SF+RPA 2 RFG, M A =1 GeV RFG, M A =1.35 GeV 1 Martini, LFG+2p2h+RPA 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E ν [GeV] Alvarez-Ruso arXiv:1012.3871 → g eff in 3 ≤ A ≤ 18 − A ≃ 0 . 80 g A Chou et al. PRC47(1993)163 11 / 24

  12. Standard Beta Decay Role of two-body correlations and two-body currents e − ν e ¯ W ± g A * Matrix Element � Ψ f | GT | Ψ i � ∝ g A and Decay Rates ∝ g 2 A * ( Z , N ) → ( Z + 1 , N − 1 )+ e + ¯ ν e 12 / 24

  13. Nuclear Interactions and Axial Currents A υ ij + ∑ ∑ t i + ∑ H = T + V = V ijk + ... i = 1 i < j i < j < k so far results are available with AV18+IL7 ( A ≤ 10) and SNPA or chiral currents ( a.k.a. hybrid calculations) * c 3 and c 4 are taken them from Entem and Machleidt PRC68(2003)041001 & LO Phys.Rep.503(2011)1 * c D fitted to GT m.e. of tritium N 3 LO Baroni et al. PRC94(2016)024003 * cutoffs Λ = 500 and 600 MeV * include also N4LO 3b currents (tiny) + ... N 4 LO * derived by Park et al. in the ′ 90 used at tree-level in many calculations (Song-Ho, A. Baroni et al. PRC93(2016)015501 Kubodera, Gazit,Marcucci, Lazauskas, Navratil ...) * pion-pole at tree-level derived H. Krebs et al. Ann.Phy.378(2017) by Klos, Hoferichter et al. PLB(2015)B746 13 / 24

  14. Single Beta Decay Matrix Elements in A = 6–10 10 C 10 B 7 Be 7 Li(ex) 7 Be 7 Li(gs) 6 He 6 Li 3 H 3 He Ratio to EXPT gfmc 1b gfmc 1b+2b(N4LO) Chou et al. 1993 - Shell Model - 1b 1 1.1 1.2 gfmc (1b) and gfmc (1b+2b); shell model (1b) Pastore et al. PRC97(2018)022501 A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003 Based on g A ∼ 1 . 27 no quenching factor GT in 3 H is fitted to expt - 2b give a 2% additive contribution to 1b prediction * similar results were obtained with MEC currents ∗ data from TUNL, Suzuki et al. PRC67(2003)044302, Chou et al. PRC47(1993)163 14 / 24

  15. 10 B + ,1) (0 < 0.08 % 10 C 98.54(14)% E ~ 2.15 MeV + ,0) (1 + ,1) (0 E ~ 0.72 MeV + ,0) (1 + ,0) (3 10 B * In 10 B, ∆ E with same quantum numbers ∼ 1 . 5 MeV * In A = 7, ∆ E with same quantum numbers � 10 MeV 15 / 24

  16. Chiral calculations of beta decay m.e.’s: Nuclear Interaction courtesy of M. Piarulli 16 / 24

  17. Chiral calculations of beta decay m.e.’s: Nuclear Currents * Chiral interactions and axial currents C E C D C D we now use 1. chiral 2– and 3–body interactions with π N and ∆ ’s developed by Piarulli et al. and 2. axial currents with ∆ ’s up to N3LO (tree-level) A. Baroni et al. arXiv:1806.10245 (2018) * c 3 and c 4 are taken them from Krebs et LO al. Eur.Phys.J.(2007)A32 * ( c D , c E ) fitted to a. trinucleon B.E. and nd doublet N 2 LO scattering length NV models or b. trinucleon B.E. and GT m.e. of N 3 LO tritium NV* models A. Baroni et al. arXiv:1806.10245 (2018) 17 / 24

Recommend


More recommend