nonparametric estimation of additive multivariate
play

Nonparametric Estimation of Additive Multivariate Diffusion - PowerPoint PPT Presentation

Nonparametric Estimation of Additive Multivariate Diffusion Processes Berthold R. Haag University of Mannheim European Young Statisticians Meeting 24.08.2005 Contents Statistical Model Smooth Backfitting Estimation Asymptotic


  1. Nonparametric Estimation of Additive Multivariate Diffusion Processes Berthold R. Haag University of Mannheim European Young Statisticians Meeting 24.08.2005 Contents • Statistical Model • Smooth Backfitting Estimation • Asymptotic Results • Simulation • Final Remarks 1

  2. Statistical Model Consider the d -dimensional time-homogenous diffusion process � ( X 1 t , . . . , X d t ) ′ � ( X t ) t ≥ 0 = t ≥ 0 , satisfying the stochastic differential equation d X t = µ ( X t ) d t + Σ( X t ) d W t . Dynamics are described by µ ( x ) = ( µ 1 ( x ) , . . . , µ d ( x )) ′ the drift vector. Σ( x ) = ( σ ij ( x )) ij the dispersion matrix . A ( x ) = Σ( x )Σ( x ) ′ = ( a ij ( x )) ij diffusion matrix, defined for identification. 2

  3. Assume that the process ( X t ) t ≥ 0 is strictly stationary, has compact support G and is strongly mixing with summable mixing coefficients. The stationary density is denoted by f ( x ). (Conditions see Veretennikov, 1997). The process is observed at nT + 1 equispaced time points in [0 , T ], denoted by X i ∆ , i = 0 , . . . , nT (∆ = n − 1 ). For high frequency sampling n → ∞ the nonparametric estimation of the drift and diffusion function is based on ∆ → 0 E (∆ − 1 ( X i ( k +1)∆ − X i k ∆ ) | X k ∆ = x ) = µ i ( x ) lim k ∆ )( X j ( k +1)∆ − X j ∆ → 0 E (∆ − 1 ( X i ( k +1)∆ − X i k ∆ ) | X k ∆ = x ) = a ij ( x ) lim 3

  4. Then the (multivariate) Nadraya-Watson estimator of the drift function is defined as the solution of nT d 1 � � 2 � � µ 1 ∆ − 1 ( X 1 k ∆ − X 1 µ 1 ( x ) K h ( x i , X i � ˆ h ( x ) = arg min ( k − 1)∆ ) − ¯ ( k − 1)∆ ) d x nT µ 1 ∈M ¯ i =1 k =1 and is given explicitly by � nT � d 1 i =1 K h ( x i , X i ( k − 1)∆ )∆ − 1 ( X 1 k ∆ − X 1 ( k − 1)∆ ) k =1 nT µ 1 ˆ h ( x ) = ˆ f h ( x ) with the usual kernel density estimator nT − 1 d 1 ˆ � � K h ( x i , X i f h ( x ) = k ∆ ) nT i =1 k =0 Estimators of the diffusion matrix are defined analogously. 4

  5. Smooth Backfitting Estimation (Mammen, Linton and Nielsen, 1999) To circumvent the curse of dimensionality assume additivity for the drift function µ 1 ( x ) = µ 1 0 + µ 1 ( x 1 ) + · · · + µ 1 ( x d ) µ 1 ( x i ) f ( x i ) d x i = 0. � where for identifiability it is assumed that It is then natural to restrict the Nadraya-Watson minimization to the space of additive functions nT � 1 � ∆ − 1 ( X 1 k ∆ − X 1 � min ( k − 1)∆ ) nT µ 1 ∈M add ¯ k =1 d � 2 � µ 1 µ 1 ( x 1 ) − · · · − ¯ µ 1 ( x d ) K h ( x i , X i − ¯ 0 − ¯ ( k − 1)∆ ) d x i =1 5

  6. This is equivalent to minimizing � 2 ˆ � � µ 1 µ 1 µ 1 ( x 1 ) − · · · − ¯ µ 1 ( x d ) min ˆ h ( x ) − ¯ 0 − ¯ f h ( x ) d x µ 1 ∈M add ¯ where the minimization is restricted to functions with � f h ( x j ) d x j = 0 . µ 1 ( x j ) ˆ ¯ The solution of this minimization are called NW-SBF estimators . 6

  7. µ 1 µ 1 ( x 1 ) , . . . , ˜ µ 1 ( x d )) of the minimization is given by the set of The solution (˜ 0 , ˜ equations ˆ f h ( x j , x i ) � d x i − ˜ � µ 1 h ( x j ) = ˆ µ 1 h ( x j ) − µ 1 h ( x i ) µ 1 ˜ ˜ 0 ˆ f h ( x j ) i � = j This can be solved iteratively, using the marginal Nadaraya-Watson estimators µ 1 h ( x j ) as starting values. ˆ For the applicability we have to use modified kernel estimators that fulfil � f h ( x j , x i ) d x i = ˆ ˆ f h ( x j ) e. g. by using modified kernels K h ( u − v ) K h ( u, v ) = . � 1 0 K h ( w − v ) d w 7

  8. Asymptotic Results Theorem 1. Under regularity assumptions, h 2 = O (( Th ) − 1 / 2 ) and nh 3 → ∞ we µ 1 ( x j ) it holds that have that for the estimators ˜ h ( x j ) − h 2 ˜ √ µ 1 h ( x j ) − µ 1 ( x j ) − b 1 β 1 µ ( x j ) Th ˜ D − → N (0 , 1) v 1 ( x j ) κ 2 ( x j ) /κ 0 ( x j ) for j = 1 , . . . , d where ∂x j ( µ 1 ( x j )) κ 1 ( x j ) h ( x j ) = h ∂ � b 1 µ 1 ( x j ) f j ( x j ) κ 0 ( x j ) d x j κ 0 ( x j ) − and v 1 ( x j ) = ( f j ( x j )) − 1 E ( a 11 ( X ) | X j = x j ) 8

  9. The bias is not given in explicit form, it is only defined as the solution to � (˜ β µ , ˜ β µ ( x 1 ) , . . . , ˜ β µ ( x d )) = arg ( β µ ( x ) − β 0 µ − β 1 µ ( x 1 ) −· · ·− β d µ ( x d )) 2 f ( x ) d x min β 0 µ ,...,β d µ with d ∂ 2 ∂ ∂x j ( µ 1 ( x j ) f ( x ))( f ( x )) − 1 + 1 � ∂ ( x j ) 2 µ 1 ( x j ) β µ ( x ) = κ 2 2 j =1 9

  10. • To judge the efficiency of the SBF estimator we compare it to the oracle µ 1 ( x j ), based on the unobservable data estimator ˇ � Y ⋆ ( k − 1)∆ = ∆ − 1 ( X 1 k ∆ − X 1 µ 1 ( X i ( k − 1)∆ ) − ( k − 1)∆ ) i � = j NW-SBF achieves the same variance as the oracle estimator, but not the bias. • Estimating elements of the diffusion matrix, the same efficiency is achieved, √ the rate of convergence is given by Tnh . 10

  11. Local Linear SBF In analogy to the Nadraya-Watson estimator, local linear estimators are defined as minimizers of x j − X j nT d d � 1 � 2 ( k − 1)∆ � � � ∆ − 1 ( X 1 k ∆ − X 1 µ 1 ( x ) − µ 1 K h ( x i , X i � ( k − 1)∆ ) − ¯ ¯ j ( x ) ( k − 1)∆ ) d x nT h k =1 j =1 i =1 or explicitly µ 1 ,LL ( x ) = ˆ S − 1 ( x )ˆ T ( x ) ˆ h S ( x ) = X T ( x ) K ( x ) X ( x ) and ˆ T ( x ) = X T ( x ) K ( x ) Y with where ˆ � T Y = ∆ − 1 � ( X ∆ − X 0 ) , . . . , ( X T − X T − ∆ )  X 1 0 − x 1 X d 0 − x d  1 . . . h h . .  ...  . . X ( x ) =   . .     X 1 T − ∆ − x 1 X d T − ∆ − x d 1 . . . h h d d 1 � �� � � K h ( X i 0 , x i ) , . . . , K h ( X i T − ∆ , x i ) � K ( x ) = diag nT i =1 i =1 11

  12. Restricting the minimization to additive functions, this is equivalent to minimizing � µ 1 ( x )) T ˆ µ 1 ,LL µ 1 ,LL µ 1 ,LL µ 1 ( x ) � ˆ µ 1 ( x )) d x � ˆ ( x ) − ¯ S = ( ˆ ( x ) − ¯ S ( x )( ˆ ( x ) − ¯ h h h with norming � � f h ( x j ) d x j + h ( x j ) d x j = 0 . µ 1 ( x j ) ˆ j ( x j ) ˆ µ 1 f 1 ¯ ¯ d ( x d )) T is an element of M add µ 1 ( x ) = (¯ µ 1 1 ( x 1 ) , . . . , ¯ µ 1 Here ¯ µ ( x ) , ¯ The solution of this minimization can be derived iteratively. The algorithm converges with geometric rate. 12

  13. √ • Asymptotic normality for the drift estimator with rate Th . √ • Asymptotic normality for the diffusion estimator with rate Tnh . • Local linear SBF leads to oracle variance and bias. 13

  14. Simulation For simulation a linear model is considered √ 0 . 75 − x 1 + 0 . 25 x 2 + x 3     x 1 + x 2 0 0 √ 0 . 75 + 0 . 5 x 1 − 2 x 2 + 0 . 25 x 3     µ ( x ) = Σ( x ) = x 2 0 0     √     1 . 5 + 0 . 25 x 1 + x 2 − 3 x 3 x 3 0 0 and a nonlinear model 0 . 75 + 0 . 5(sin(2 x 1 ) − x 1 ) + 0 . 25 x 2 + x 3    ( x 1 ) 2 + ( x 2 ) 2  � 0 0 √ 0 . 75 + 0 . 5 x 1 − 2 x 2 + 0 . 25 x 3     µ ( x ) = Σ( x ) = x 2  . 0 0     √    1 . 5 + 0 . 25 x 1 + x 2 − 3 x 3 x 3 0 0 In both cases µ 1 ( x ) is estimated based on a sample of n = 30 , T = 35 14

  15. SBF estimator of µ 1 ( x 1 ) 2.5 1.0 −0.5 1.0 1.5 2.0 SBF estimator of µ 1 ( x 2 ) 0.2 −0.1 −0.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 SBF estimator of µ 1 ( x 3 ) 0.5 −0.5 0.4 0.6 0.8 1.0 1.2 1.4 15

  16. SBF estimator of µ 1 ( x 1 ) 1.5 0.0 1.0 1.5 2.0 Density of X 1 0.6 0.4 0.2 1.0 1.5 2.0 16

  17. SBF estimator of µ 1 ( x 1 ) 2 −2 −6 3 4 5 6 7 SBF estimator of µ 1 ( x 2 ) 0.5 −1.0 1.0 1.5 2.0 2.5 3.0 SBF estimator of µ 1 ( x 3 ) 2 1 0 −2 1.0 1.5 2.0 17

  18. SBF estimator of µ 1 ( x 1 ) 2 −2 −6 3 4 5 6 7 Density of X 1 0.20 0.10 3 4 5 6 7 18

  19. Final Remarks • Asymptotic distribution for SBF estimators of drift and diffusion of multivariate diffusion processes. • Extend to fixed time horizon (fixed T ). The diffusion estimator should be estimable with mixed aymptotic normality. • Extension to low frequency data (fixed n ). This would require extensions of the estimators of Gobet, Hoffmann and Reiß (2004). 19

Recommend


More recommend