Nicola Pinna Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal. School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-744, Korea E-mail: pinna@ua.pt - pinna@snu.ac.kr Phone: 02-880-1525 1
Université Pierre et Marie Curie Prof. Marie-Paule PILENI Shape Control of CdS Nanoparticles Adv. Mater. 2001 , 13, 261 - Langmuir 2001 , 17, 7982 2
Optical Properties of Silver Nanoparticles Phys. Rev. B. 2002 , 66, 045415 Prof. Robert Schlögl 3
Vanadium Oxide Nanowires 2VO(O i Pr) 3 + 3H 2 O V 2 O 5 + 6ROH Adv. Mat. 2003 , 15, 329 - Nano Lett. 2003 , 3, 1131 - Phys. Rev. B, 2004 , 69, 155114 Size Control of V 2 O 5 nanorods and nanowires 4
Dr. Axel Knop-Gericke, Dr. Michael Hävecker @ FHI With Michael Hävecker in Bessy February 11, 2005 @ 1:24:58 AM Prof. Markus Antonietti 5
6
7
8
9
Acknowledgements Dr. Marc-Georg Willinger Tiago Belo Mélanie Ferrié Susana Gomes Catherine Marichy Andrea Pucci Valentina Rebuttini Kyunghwan Lee Seunghwan Baek The group in Aveiro (02-2010) The group in Seoul (03-2010) Former Members: Dr. Guylhaine Clavel - Montpellier University Dr. Weihua Di – Changchun Institute of Optics, Fine Mechanics Dr. Tobias Herntrich –TU Darmstadt Dr. Mohamed Karmaoui – Oslo University Dr. Erwan Rauwel – Oslo University Non-aqueous sol-gel routes to oxides Inorganic Nanoparticles Hybrid Materials Thin Films by ALD Metal complexes + organic solvents “Benzyl Alcohol route”: Surface ester elimination reaction: e.g benzyl alcohol Metal alkoxides + alcohols Metal alkoxides + carboxylic acid V 2 O 3 , Nb 2 O 5 , HfO 2 , ZrO 2 , - Yttrium and lanthanide oxide Nanometric coatings on Ta 2 O 5 , SnO 2 , In 2 O 3 , ZnO, - Phosphonates different substrates: Fe 3 O 4 , (Ba,Sr)TiO 3 , BaZrO 3 , - Alkaline earth aluminates HfO 2 , TiO 2 , Ta 2 O 5 ,V 2 O 4 LiNbO 3 , etc. organic inorganic nanostructures Angew. Chem. Int. Ed. 2008 , 47, 3592 J. Phys. Chem. C 2008 , 112, 12754 J. Mater. Chem. 2007 , 17, 2769 Angew. Chem. Int. Ed. 2008 , 47, 5292 Nano Lett. 2008 , 8, 4201 Nanoscale, 2009 , 1, 360 J. Mater. Chem. 2009 , 19, 454 J. Phys. Chem. C 2010 , 114, 6290 Phys. Chem. Chem. Phys. 2009 , 11, 3615 M. Niederberger, N. Pinna, Metal Oxide Nanoparticles in Organic Solvents , Nanoscale, 2010 , 2, 786 Springer, 2009 - ISBN: 978-1-84882-670-0 Patent WO 2008 098963 A2 10
HfO 2 Nb 2 O 5 Ga 2 O 3 In 2 O 3 SnO 2 Fe 3 O 4 Angew. Chem. Int. Ed. 2008 , 47, 5292 In 2 O 3 SnO 2 WO x Fe 3 O 4 Nb 2 O 5 HfO 2 Angew. Chem. Int. Ed. 2008 , 47, 5292 11
Lithium Titanium Oxide (400) Intensity (a.u.) (111) (440) (311) (333) 10 20 30 40 50 60 70 2 θ (°) J. Mater. Chem. 2010 , submitted Lithium Titanium Oxide 160 a) 140 Capacity (mAh/g) 120 180 100 80 160 60 140 Capacity (mAh/g) 40 1C 1C 2C 4C 8C 10C 20C 30C 1C 1C 120 20 100 0 0 10 20 30 40 50 60 70 80 90 100 80 Discharge Calcined Cycle number Charge Calcined 60 180 Discharge Pristine b) Charge Pristine 160 40 140 Capacity (mAh/g) 20 120 0 100 0 50 100 150 200 80 Cycle Number 60 1C 2C 4C 8C 10C 20C 30C 1C 40 20 0 0 10 20 30 40 50 60 70 80 J. Mater. Chem. 2010 , submitted Cycle number 12
Hybrid Materials See detailed example next lecture 13
Atomic Layer Deposition •ALD is a deposition technique based on self-limiting sequential surface chemistry. •ALD permits to deposit conformal thin films of materials onto substrates of varying compositions. •ALD is similar in chemistry to chemical vapor deposition (CVD), except that the ALD reaction breaks the CVD reaction into two half-reactions, keeping the precursor materials separate during the reaction. ALD film growth makes atomic scale deposition control possible Adapted from: 14
HfO 2 5nm Si wafer Relative permittivity ( ε r ) Temperature ( ° C) Thickness (nm) EOT (nm) 80 7.6 3.26 9.6 100 9.5 2.97 12.5 150 8.7 2.95 11.5 200 11.7 2.92 15.7 250 10.8 2.88 14.6 300 10.3 1.85 21.7 350 10.9 2.02 21.3 Conformal coating of carbon nanotubes Nano Lett. 2008 , 8, 4201 - Phys. Chem. Chem. Phys. 2009 , 11, 3615 15
Modification of the optical properties of opals Coating with TiO 2 by ALD with 1 nm step proving the robustness of our ALD process In collaboration with Renaud Vallée and Serge Ravaine from CRPP - Bordeaux Silica Opal Opal Completely Filled 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance Absorbance 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 550 600 650 700 750 800 850 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 850 Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) 16
Recommend
More recommend