new edge asymptotics of skew young diagrams via free
play

New edge asymptotics of skew Young diagrams via free boundaries Dan - PowerPoint PPT Presentation

New edge asymptotics of skew Young diagrams via free boundaries Dan Betea University of Bonn joint work with J. Bouttier, P. Nejjar and M. Vuleti c FPSAC, Ljubljana, 2019 4.VI1.MM19 Outline This talk contains stuff on partitions and


  1. New edge asymptotics of skew Young diagrams via free boundaries Dan Betea University of Bonn joint work with J. Bouttier, P. Nejjar and M. Vuleti´ c FPSAC, Ljubljana, 2019 4.VI1.MM19

  2. Outline This talk contains stuff on ◮ partitions and tableaux ◮ the Plancherel (mostly) and uniform measures on Young diagrams ◮ main results on skew Young diagrams ◮ the beyond and a few surprises.

  3. Partitions • • ◦ • • ◦ • • • ◦ ◦ ◦ ◦ ◦ Figure: Partition (Young diagram) λ = (2 , 2 , 2 , 1 , 1) (Frobenius coordinates (1 , 0 | 4 , 1)) in English, French and Russian notation, with associated Maya diagram (particle-hole representation). Size | λ | = 8, length ℓ ( λ ) = 5. Figure: Skew partitions (Young diagrams) (4 , 3 , 2 , 1) / (2 , 1) (but also (5 , 4 , 3 , 2 , 1) / (5 , 2 , 1) , . . . ) and (4 , 4 , 2 , 1) / (2 , 2) (but also (6 , 4 , 4 , 2 , 1) / (6 , 2 , 2) , . . . )

  4. Counting tableaux A standard (semi-standard) Young tableau SYT (SSYT) is a filling of a (possibly skew) Young diagram with numbers 1 , 2 , . . . strictly increasing down columns and rows (rows weakly increasing for semi-standard). 1 3 5 6 1 1 2 2 1 7 1 2 2 4 9 2 2 3 3 4 1 3 7 3 2 5 2 2 8 4 6 3 dim λ := number of SYTs of shape λ, � dim λ := number of SSYTs of shape λ with entries from 1 . . . n and similarly for dim λ/µ , � dim λ/µ .

  5. Two natural measures on partitions ◮ On partitions of n ( | λ | := � λ i = n ): Plancherel vs. uniform Prob ( λ ) = (dim λ ) 2 1 vs. Prob ( λ ) = n ! # { partitions of n } ◮ On all partitions: poissonized Plancherel vs. (grand canonical) uniform Prob ( λ ) = e − ǫ 2 ǫ 2 | λ | (dim λ ) 2 Prob ( λ ) = u | λ | � (1 − u i ) vs. ( | λ | !) 2 i ≥ 1 with ǫ > 0 , 1 > u > 0 parameters.

  6. Ulam’s problem and Hammersley last passage percolation I PPP ( ǫ 2 ) in the unit square.

  7. Ulam’s problem and Hammersley last passage percolation II Quantity of interest: L = longest up-right path from (0 , 0) to (1 , 1) (= 4 here).

  8. Ulam’s problem and Hammersley last passage percolation III 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 9 4 7 2 5 8 6 1 10 3 L is the length (any) of the longest increasing subsequence in a random permutation of S N with N ∼ Poisson ( ǫ 2 ).

  9. The poissonized Plancherel measure By the Robinson–Schensted–Knuth correspondence and Schensted’s theorem, L = λ 1 in distribution where λ has the poissonized Plancherel measure: Prob ( λ ) = e − ǫ 2 ǫ 2 | λ | (dim λ ) 2 ( | λ | !) 2 = e − ǫ 2 s λ ( pl ǫ ) s λ ( pl ǫ ) ( s is a Schur function, pl ǫ the Plancherel specialization sending p 1 → ǫ, p i → 0 , i ≥ 2) Interest: what happens to λ 1 as ǫ → ∞ ? (large PPP, large random permutation, ...)

  10. Limit shape A Plancherel-random representation (partition!) of S 2304 ( Prob ( λ ) = (dim λ ) 2 / n !, n = 2304), at IHP. The limit shape should be obvious (VerKer, LogShe 1977).

  11. Limit shapes: Plancherel vs uniform Random Plancherel (left) and uniform (right) partitions of N = 10000. The scale is √ √ different: N for Plancherel, N log N for uniform.

  12. The Baik–Deift–Johansson theorem and Tracy–Widom Theorem (BaiDeiJoh 1999) If λ is distributed as poissonized Plancherel, we have: � λ 1 − 2 ǫ � ǫ →∞ Prob lim ≤ s = F GUE ( s ) := det(1 − Ai 2 ) L 2 ( s , ∞ ) ǫ 1 / 3 with � ∞ Ai 2 ( x , y ) := Ai ( x + s ) Ai ( y + s ) ds 0 and Ai the Airy function (solution of y ′′ = xy decaying at ∞ ). F GUE is the Tracy–Widom GUE distribution. It is by (original) construction the extreme distribution of the largest eigenvalue of a random hermitian matrix with iid standard Gaussian entries as the size of the matrix goes to infinity.

  13. The Erd˝ os–Lehner theorem and Gumbel Theorem (ErdLeh 1941) For the uniform measure Prob ( λ ) ∝ u | λ | we have: � � λ 1 < − log(1 − u ) ξ = e − e − ξ . u → 1 − Prob lim + log u | log u |

  14. The finite temperature Plancherel measure On pairs of partitions µ ⊂ λ ⊃ µ consider the measure (Bor 06) Prob ( µ, λ ) ∝ u | µ | · ε | λ |−| µ | dim 2 ( λ/µ ) ( | λ/µ | !) 2 with u = e − β , β = inverse temperature. ◮ u = 0 yields the poissonized Plancherel measure ◮ ε = 0 yields the (grand canonical) uniform measure

  15. What is in a part? PPP ( u 4 ǫ 2 ) PPP ( u 3 ǫ 2 ) PPP ( u 2 ǫ 2 ) PPP ( uǫ 2 ) PPP ( ǫ 2 ) With L the longest up-right path in this cylindric geometry, in distribution, Schensted’s theorem states that λ 1 = L + κ 1 where κ is a uniform partition Prob ( κ ) ∝ u | κ | independent of everything else.

  16. The finite temperature Plancherel measure II Theorem (B/Bouttier 2019) √ ε 1 − u → ∞ and u = exp( − α M − 1 / 3 ) → 1 . Then Let M = � λ 1 − 2 M � = F α ( s ) := det(1 − Ai α ) L 2 ( s , ∞ ) M →∞ Prob lim ≤ s M 1 / 3 with � ∞ e α s Ai α ( x , y ) := 1 + e α s · Ai ( x + s ) Ai ( y + s ) ds −∞ the finite temperature Airy kernel.

  17. A word on the finite temperature Airy kernel Ai α is Johansson’s (2007) Airy kernel in finite temperature (also appearing as the KPZ crossover kernel: SasSpo10 and AmiCorQua11, in random directed polymers BorCorFer11, cylindric OU processes LeDMajSch15): � ∞ e α s Ai α ( x , y ) = 1 + e α s Ai ( x + s ) Ai ( y + s ) ds −∞ and interpolates between the Airy kernel and a diagonal exponential kernel: α →∞ Ai α ( x , y ) = Ai 2 ( x , y ) , lim � x � 1 α − 1 2 α log(4 πα 3 ) , y α − 1 α Ai α 2 α log(4 πα 3 ) = e − x δ x , y . lim α → 0+ If F α ( s ) , F GUE ( s ), and G ( s ) are the Fredholm determinants on ( s , ∞ ) of Ai α , Ai 2 and e − x δ x , y , then (Joh 2007) � s � α − 1 = G ( s ) = e − e − s . α →∞ F α ( s ) = F GUE ( s ) , α → 0+ F α 2 α log(4 πα 3 ) lim lim It appeared in seemingly two different situations: ◮ random matrix models on the cylinder/in finite temperature (Joh, LeDMajSch, ...) ◮ the KPZ equation with wedge I.C. at finite time (SasSpo, AmiCorQua, ...)

  18. Three limiting regimes for edge fluctuations Theorem (B/Bouttier 2019) With u = e − r → 1 as r → 0+ and ǫ → ∞ (or finite) we have: ◮ ǫ r 2 → 0+ leads to Gumbel behavior; thermal fluctuations win ◮ ǫ r 2 → ∞ leads to Tracy–Widom; quantum fluctuations win ◮ ǫ r 2 → α ∈ (0 , ∞ ) leads to finite temperature Tracy–Widom F α ; equilibrium between thermal and quantum

  19. The stuff that’s in the FPSAC abstract Consider the following measures (oc = number of odd columns, n letters for � dim): · u | µ | · ǫ | λ/µ | dim( λ/µ ) M ր ( µ, λ ) ∝ a oc ( µ ) a oc ( λ ) , 1 2 | λ/µ | ! · u | µ | v | ν | · ǫ | λ/µ | + | λ/ν | dim( λ/µ ) dim( λ/ν ) M րց ( µ, λ, ν ) ∝ a oc ( µ ) a oc ( λ ) , 1 2 | λ/µ | ! · | λ/ν | ! · u | µ | · q | λ/µ | · � M ր ( µ, λ ) ∝ a oc ( µ ) � a oc ( λ ) dim( λ/µ ) , 1 2 M րց ( µ, λ, ν ) ∝ a oc ( µ ) a oc ( λ ) · u | µ | v | ν | · q | λ/µ | + | λ/ν | · � � dim( λ/µ ) � dim( λ/ν ) . 1 2 They all interpolate between Plancherel-type ( u = 0) and uniform ( ǫ, q = 0) measures.

  20. What is in a part? ( λ 1 = L + κ 1 via RSK) 0 0 0 0 0 0 0 0 0 0 Geom (( uv ) 4 x 3 y 2 ) 0 0 0 0 0 0 0 0 0 κ κ κ κ κ 0 κ 0 0 0 1 2 8 0 0 0 2 0 0 0 Geom ( u ( uv ) x 3 ) κ Geom ( u 2 y 3 ) 8 κ 0 0 1 2 3 2 5 0 0 0 5 0 0 κ 2 κ Geom ( u 2 ( uv ) 2 x 1 x 2 ) 0 0 0 3 0 0 2 10 0 2 10 0 2 κ 9 κ Geom (( uv ) 2 x 2 y 3 ) 0 3 2 2 1 0 2 6 0 0 2 3 1 κ 1 κ 8 2 0 2 9 4 25 1 2 4 25 1 Geom ( vy 3 ) 2 Geom ( uy 3 ) 9 Geom (( uv ) 4 x 2 y 4 ) 1 Geom ( u 8 y 2 y 4 ) 1 1 3 11 6 7 0 0 2 7 11 2 0 Geom ( v 2 ( uv ) 2 y 2 y 4 ) Geom ( v 2 y 1 y 2 ) 4 Geom ( u 6 y 2 y 4 ) 4 4 8 0 10 2 0 2 2 13 0 12 1 0 Geom ( u 2 y 2 ) Geom ( x 3 y 2 ) Geom ( v ( uv ) y 2 ) 0 17 1 2 1 4 0 1 3 3 0 8 ν 1 0 x 4 10 1 14 5 0 2 1 2 2 1 2 0 Geom ( y 3 ) Geom (( uv ) 2 x 4 y 2 ) 0 Geom ( u 4 y 2 y 4 ) x 3 0 5 15 1 3 0 3 3 0 3 11 Geom ( u 2 x 2 x 4 ) 1 Geom ( u 2 y 2 y 4 ) x 2 6 4 0 2 1 1 3 2 1 4 3 Geom ( uy 2 ) x 1 Geom ( ux 2 ) 3 7 3 1 2 3 1 2 µ λ 7 µ λ y 1 y 2 y 3 y 4 y 1 y 2 y 3 y 4 Geom ( x 2 y 4 ) Geom ( y 2 y 4 ) M րց ( µ, λ, ν ) (left) and � M ր ( µ, λ ) (right); Figure: Longest up-right path in orange of length L = 199 (left) and L = 130 (right). � xi = yi = q ; case a 1 = a 2 = 0 (for generic, multiply the parameters in the boundary triangles by a 1 and a 2 for the two different boundaries; κ is uniform with prob. ∝ ( uv ) | κ | (left) and ∝ u | κ | (right).

  21. Main theorem: edge limits (SYT case) Theorem (B/Bouttier/Nejjar/Vuleti´ c FPSAC 2019) ǫ Fix η, α i , i = 1 , 2 positive reals. Let M := 1 − u 2 → ∞ and set u = v = exp( − η M − 1 / 3 ) , a i = u α i /η , i = 1 , 2 all going to 1 as M → ∞ . (In particular, ǫ ∼ M 2 / 3 → ∞ .) We have: � � η log M 1 / 3 λ 1 − 2 M ≤ s + 1 M →∞ M ր = F 1; α 1 ,α 2 ; η ( s ) , lim M 1 / 3 η � � 2 η log M 1 / 3 λ 1 − 2 M ≤ s + 1 M →∞ M րց = F 2; α 1 ,α 2 ; η ( s ) lim M 1 / 3 2 η with the distributions F ··· explicit Fredholm pfaffians. Remark: This theorem generalizes celebrated results of Baik–Rains (2000) on longest increasing subsequences in symmetrized permutations, as well as the classical Baik–Deift–Johansson theorem.

Recommend


More recommend