negative anomalous dimensions in n 4 sym
play

Negative anomalous dimensions in N =4 SYM Yusuke Kimura (OIQP) - PowerPoint PPT Presentation

13 Nov., 2015, YITP Workshop - Developments in String Theory and Quantum Field Theory Negative anomalous dimensions in N =4 SYM Yusuke Kimura (OIQP) 1503.0621 [hep-th] with Ryo Suzuki 1 1. Introduction brief review of N=4 SYM 2 Anomalous


  1. 13 Nov., 2015, YITP Workshop - Developments in String Theory and Quantum Field Theory Negative anomalous dimensions in N =4 SYM Yusuke Kimura (OIQP) 1503.0621 [hep-th] with Ryo Suzuki 1

  2. 1. Introduction – brief review of N=4 SYM 2

  3. Anomalous dimensions of N =4 SYM (Conformal Field Theory) 2 𝑂 Two-point functions πœ‡ = 𝑕 𝑍𝑁 𝑑 𝛽 πœ€ 𝛽𝛾 Ξ” = Ξ” (0) + πœ‡Ξ” (1) + πœ‡ 2 Ξ” (2) + β‹― 𝑃 𝛽 𝑦 𝑃 𝛾 𝑧 = 𝑦 βˆ’ 𝑧 2Ξ” 𝛽 Scaling dimension Dilatation generator βŠ‚ Conformal symmetry, so(4,2) 𝐸 = 𝐸 (0) + πœ‡ 𝐸 (1) + πœ‡ 2 𝐸 2 + β‹― 𝐸𝑃 𝛽 (0) = Ξ” 𝛽 𝑃 𝛽 (0) Via the radial quantisation, 𝑆 4 β†’ 𝑇 3 Γ— 𝑆 𝐼|πœ”βŒͺ = 𝐹|πœ”βŒͺ 3

  4. AdS/CFT correspondence 4D 𝑂 = 4 S𝑉(𝑂) SYM (CFT) ⇔ string theory on 𝐡𝑒𝑇 5 Γ— 𝑇 5 4 𝑆 𝐡𝑒𝑇 πœ‡ πœ‡ = 4πœŒπ‘‚ = 𝑕 𝑑 Ξ” πœ‡, 𝑂 = 𝐹(𝑕 𝑑 , 𝑆 𝐡𝑒𝑇 /π‘š 𝑑 ) π‘š 𝑑 2 𝑂 ) ( πœ‡ = 𝑕 𝑍𝑁 Several ways of looking at the equation οƒΌ Check the duality οƒΌ Use to understand something new  String theory at small curvature 𝑆 𝐡𝑒𝑇 β‰ͺ π‘š 𝑑 is difficult  Gauge theory description is easier at πœ‡ β‰ͺ 1 4

  5. Operator mixing problem 𝐡 𝜈 , Ξ¦ 𝑏 𝑏 = 1, β‹― , 6 , πœ” 𝛽 For the SO(6) sector, the 1-loop dilatation operator is given by 𝐸 1βˆ’π‘šπ‘π‘π‘ž = 1 𝑂 𝐼 𝐼 = βˆ’ 1 2 : 𝑒𝑠 Ξ¦ 𝑛 , Ξ¦ π‘œ πœ– 𝑛 , πœ– π‘œ : βˆ’ 1 4 : 𝑒𝑠 Ξ¦ 𝑛 , πœ– π‘œ Ξ¦ 𝑛 , πœ– π‘œ : πœ– 𝑛 π‘—π‘˜ Ξ¦ π‘œ π‘™π‘š = πœ€ π‘›π‘œ πœ€ π‘—π‘š πœ€ Ξ¦ 𝑛 are just matrices π‘˜π‘™ πΈπœ“ 𝛽 = 𝑁 𝛽𝛾 πœ“ 𝛾 1) for a general basis Diagonalise 𝑁 𝛽𝛾 to obtain 𝐸𝑃 𝛽 = Ξ” 𝛽 𝑃 𝛽 2) Eigenvalue problem of the matrix model 5

  6. Will study the spectrum of anomalous dimensions, focusing on the sign of them Ξ” = Ξ” (0) + πœ‡Ξ” 1 (1/𝑂) + 𝑃(πœ‡ 2 ) + β‹― 1. In the planar limit, anomalous dimensions are all positive 2. But it is not the case when you include non-planar corrections To understand physics of negative anomalous dimensions is to understand nonplanar corrections 6

  7. Outline οƒΌ Brief review of N=4 SYM (CFT) οƒΌ Anomalous dimensions οƒΌ Dilatation operator οƒΌ Operator mixing problem οƒΌ Planar vs Non-planar οƒΌ Negative anomalous dimensions [1503.0621, YK-R.Suzuki] 7

  8. 2. Operator mixing problem – planar vs non-planar 8

  9. Operator mixing 𝑒𝑠 Ξ¦ 𝑛 , Ξ¦ π‘œ πœ– 𝑛 , πœ– π‘œ = 2𝑒𝑠 Ξ¦ 𝑛 Ξ¦ π‘œ πœ– 𝑛 πœ– π‘œ βˆ’ 2𝑒𝑠 Ξ¦ 𝑛 Ξ¦ π‘œ πœ– π‘œ πœ– 𝑛 𝑒𝑠 Ξ¦ 𝑛 , πœ– π‘œ Ξ¦ 𝑛 , πœ– π‘œ = 2𝑒𝑠 Ξ¦ 𝑛 πœ– π‘œ Ξ¦ 𝑛 πœ– π‘œ βˆ’ 2𝑒𝑠 Ξ¦ 𝑛 Ξ¦ 𝑛 πœ– π‘œ πœ– π‘œ 𝑒𝑠 Ξ¦ 𝑛 Ξ¦ π‘œ πœ– 𝑛 πœ– π‘œ 𝑒𝑠 𝐡Φ 𝑏 𝑒𝑠 𝐢Φ 𝑐 = 𝑒𝑠 𝐢𝐡Φ 𝑐 Ξ¦ 𝑏 + 𝐡𝐢Φ 𝑏 Ξ¦ 𝑐 𝑒𝑠 Ξ¦ 𝑛 Ξ¦ π‘œ πœ– 𝑛 πœ– π‘œ 𝑒𝑠 𝐡Φ 𝑏 𝐢Φ 𝑐 = 𝑒𝑠 𝐡 𝑒𝑠 𝐢Φ 𝑐 Ξ¦ 𝑏 + 𝑒𝑠 𝐢 𝑒𝑠 𝐡Φ 𝑏 Ξ¦ 𝑐 Dilatation operator changes the number of traces by one - Joining and splitting When the two derivatives act on nearest neighbor matrices, we get a term whose trace structure is not changed 𝑒𝑠 Ξ¦ 𝑛 Ξ¦ π‘œ πœ– 𝑛 πœ– π‘œ 𝑒𝑠 𝐡Φ 𝑏 Ξ¦ 𝑐 = 𝑒𝑠 𝐡 𝑒𝑠 Ξ¦ 𝑐 Ξ¦ 𝑏 + 𝑂𝑒𝑠 𝐡Φ 𝑏 Ξ¦ 𝑐 The two derivatives acting on non-nearest neighbor matrices, the trace structure changes 9

  10. 𝐼𝑒𝑠 𝐡Φ 𝑏 Ξ¦ 𝑐 = 𝑂 𝑒𝑠 𝐡Φ 𝑏 Ξ¦ 𝑐 βˆ’ 𝑒𝑠 𝐡Φ 𝑐 Ξ¦ 𝑏 + 1 2 πœ€ 𝑏𝑐 𝑒𝑠 𝐡Φ 𝑛 Ξ¦ 𝑛 +π‘’π‘π‘£π‘π‘šπ‘“ 𝑒𝑠𝑏𝑑𝑓𝑑 Nearest neighbour transpositions 𝑄 and contractions 𝐷 on flavor indices 𝑄 β‹… Ξ¦ 𝑏 Ξ¦ 𝑐 = Ξ¦ 𝑐 Ξ¦ 𝑏 𝐷 β‹… Ξ¦ 𝑏 Ξ¦ 𝑐 = πœ€ 𝑏𝑐 Ξ¦ 𝑛 Ξ¦ 𝑛 𝐼 𝑄 = 1 βˆ’ 𝑄 + 1 2 𝐷 𝐼 = 𝑂𝐼 𝑄 + 𝐼 𝑂𝑄 𝐼 𝑄 : not changing the trace structure, but changing the flavour structure 𝐼 𝑂𝑄 : changing the trace structure and the flavour structure 10

  11. Planar limit 𝐷 οƒΌ Dilatation operator is 𝐼 𝑄 = 1 βˆ’ 𝑄 + 2 β€’ Mapped to the Hamiltonian of an integrable spin chain [02 Minahan-Zarembo] οƒΌ the mixing is only among operators with the same trace structure (i.e. trace structure has a meaning) 𝑒𝑠(Ξ¦ 6 ) Block-diagonal mixing matrix ∼ 𝑒𝑠 Ξ¦ 3 𝑒𝑠(Ξ¦ 3 ) β‹± Non-planar – we do not have the above properties (We can find a nice mixing pattern in non-planar situations in terms of Young diagrams) 11

  12. Remark 𝐼 = 𝑂𝐼 𝑄 + 𝐼 𝑂𝑄 Acting on a small operator 𝐹 = 𝑃(𝑂) + 𝑃(1) 𝐹 = 𝑃(𝑂𝑀) + 𝑃(𝑀 2 ) Acting on a very large operator The planar limit is 𝑂 ≫ 𝑀 𝑕 𝑓𝑔𝑔 = 𝑀/𝑂 D-branes are considered to be described by large operators 𝑀 ∼ 𝑃 𝑂 , 𝑂 ≫ 1 - One can not use the planar limit 12

  13. 3. Negative anomalous dimensions [1503.0621, YK-R.Suzuki] 13

  14. Spectral problem in the so(6) singlet sector 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 )𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 ) , 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 Ξ¦ 𝑏 Ξ¦ 𝑏 ) οƒΌ SO(6) singlet operators Singlets are mapped to singlets under dilatation  Consider planar zero modes at one-loop - 𝐼 𝑄 πœ” 0 = 0 o Giving an interesting class of operators o Thanks to integrability, there is a large degeneracy in the planar spectrum.  Turning on 1/𝑂 corrections, the planar zero modes will get anomalous 1 1 dimensions of the form: 𝛿 = 0 + 𝑂 𝛿 1 + 𝑂 2 𝛿 2 + β‹― οƒΌ Sign of 𝛿 1 , 𝛿 2 οƒΌ Operator mixing among the planar zero modes 14

  15. 𝑀 = 4 There are 4 singlet operators 𝑒 1 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 )𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 ) , 𝑒 2 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑏 )𝑒𝑠(Ξ¦ 𝑐 Ξ¦ 𝑐 ) 𝑒 3 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 Ξ¦ 𝑏 Ξ¦ 𝑏 ) , 𝑒 4 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑏 Ξ¦ 𝑐 Ξ¦ 𝑐 ) 𝐼𝑒 𝑏 = 𝑂𝛿 𝑏𝑐 𝑒 𝑐 0 2 βˆ’10/𝑂 10/𝑂 0 2 βˆ’12/𝑂 12/𝑂 𝛿 = βˆ’12/𝑂 2/𝑂 4 βˆ’2 βˆ’2/𝑂 7/𝑂 βˆ’2 9 block-diagonal if 𝑂 ≫ 1 , where the single-traces are orthogonal to the double-traces. Use Mathematica to compute eigenvalues 15

  16. 𝛿 (one-loop anomalous dimension) vs 𝑂 𝑀 = 4 Planar zero mode Negative mode 16

  17. 𝑒 1 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 )𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 ) , 𝑒 2 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑏 )𝑒𝑠(Ξ¦ 𝑐 Ξ¦ 𝑐 ) 𝑀 = 4 𝑒 3 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑐 Ξ¦ 𝑏 Ξ¦ 𝑏 ) , 𝑒 4 = 𝑒𝑠(Ξ¦ 𝑏 Ξ¦ 𝑏 Ξ¦ 𝑐 Ξ¦ 𝑐 ) The negative mode looks like 𝑏𝑐 + 3 5 πœ” = 6π‘ˆ 𝑏𝑐 π‘ˆ 4𝑂 14𝑒 3 βˆ’ 4𝑒 4 + 168𝑂 2 978𝑒 1 βˆ’ 107𝑒 2 + β‹― The leading term is given by the energy-momentum tensor, which is traceless and symmetric 𝑏𝑐 = 𝑒𝑠 Ξ¦ 𝑏 Ξ¦ 𝑐 βˆ’ 1 π‘ˆ 6 πœ€ 𝑏𝑐 𝑒𝑠(Ξ¦ 𝑛 Ξ¦ 𝑛 ) π‘„π‘ˆ 𝑏𝑐 = π‘ˆ 𝑏𝑐 , π·π‘ˆ 𝑏𝑐 = 0 It is annihilated by the planar dilatation operator, 𝐼 𝑄 = 1 βˆ’ 𝑄 + 𝐷/2 𝐼 𝑄 π‘ˆ 𝑏𝑐 π‘ˆ 𝑏𝑐 = 𝐼 𝑄 π‘ˆ 𝑏𝑐 π‘ˆ 𝑏𝑐 + π‘ˆ 𝑏𝑐 𝐼 𝑄 π‘ˆ 𝑏𝑐 = 0 17

  18. Planar zero modes Number of planar zero modes and singlet operators 𝐼 𝑄 = 1 βˆ’ 𝑄 + 𝐷/2 𝐼 𝑄 πœ” 0 = 0 𝐷 𝑗 1 𝑗 2 ⋯𝑗 π‘š = 𝑒𝑠 Ξ¦ (𝑗 1 Ξ¦ 𝑗 2 β‹― Ξ¦ 𝑗 π‘š ) 1/2 BPS : symmetric and traceless 𝐼 𝑄 𝐷 𝑗 1 𝑗 2 ⋯𝑗 π‘š = 0 𝑀 = 4 : 𝐷 π‘—π‘˜ 𝐷 π‘—π‘˜ 𝑀 = 6 : 𝐷 π‘—π‘˜π‘™ 𝐷 π‘—π‘˜π‘™ , 𝐷 π‘—π‘˜ 𝐷 π‘˜π‘™ 𝐷 𝑙𝑗 𝑀 = 8 : 𝐷 π‘—π‘˜π‘™π‘š 𝐷 π‘—π‘˜π‘™π‘š , 𝐷 π‘—π‘˜π‘™π‘š 𝐷 π‘—π‘˜ 𝐷 π‘™π‘š , 𝐷 π‘—π‘˜π‘™ 𝐷 π‘—π‘˜π‘š 𝐷 π‘™π‘š , 𝐷 π‘—π‘˜ 𝐷 π‘˜π‘— 𝐷 π‘™π‘š 𝐷 π‘šπ‘™ , 𝐷 π‘—π‘˜ 𝐷 π‘˜π‘™ 𝐷 π‘™π‘š 𝐷 π‘šπ‘— οƒΌ Can not construct single-trace planar zero modes 18

  19. 𝑀 = 6 There are 15 singlet operators There are 2 planar zero modes. One stays on the zero, and the other gets a negative anomalous dimension. 19

  20. 𝑀 = 8 71 singlets 5 planar zero modes 20

  21. On the planar zero modes Mathematica computation at 𝑀 = 4,6,8,10 and analytic computation with some approximation 𝐼 0 πœ” 0 = 0 πΌπœ” = π‘‚π›Ώπœ” 𝛿 = 𝛿 0 + 𝛿 1 𝑂 + 𝛿 2 πœ” = πœ” 0 + πœ” 1 𝑂 + πœ” 2 𝑂 2 + β‹― 𝑂 2 + β‹― o 𝛿 0 = 0 , 𝛿 1 = 0 , 𝛿 2 ≀ 0 β€’ Planar zero mode β†’ negative mode o πœ” 0 is a linear combination of the planar zero modes with a fixed number of traces 𝑒𝑠 Ξ¦ 4 𝑒𝑠 Ξ¦ 4 𝑒𝑠(Ξ¦ 2 ) is orthogonal to 𝑒𝑠 Ξ¦ 5 𝑒𝑠 Ξ¦ 3 𝑒𝑠(Ξ¦ 2 ) in the β€’ planar limit, but they mix by the 1/𝑂 effect. β€’ the number of traces might be a good quantity 21

  22. A possible interpretation of negative modes Based on the standard correspondence of AdS/CFT Ξ” = Ξ” 0 + πœ‡ 𝛿 2 2 1 𝑂 2 + β‹― 𝛿 2 < 0 𝐹 = 𝐹 0 + 𝛿 2 𝑕 𝑑 𝛽 β€² + β‹― No interaction (planar zero mode) Negative mode The negative modes would describe multi-particle (multi-string) states with non-zero binding energy. [02 Arutuynov, Penati, Petkou, Santambrogio, Sokatchev] The number of states might be related to the number of traces in πœ” 0 22

Recommend


More recommend