Natural Response to Non-zero Initial Conditions Prof. Seungchul Lee Industrial AI Lab.
The First Order ODE • Solution will be exponential functions – Unknown coefficient determined by initial conditions • Stability – unstable if 𝑙 > 0 – stable if 𝑙 < 0 2
The First Order ODE 3
The First Order ODE • 𝜐 : time constant – Large 𝜐 : slow response – Small 𝜐 : fast response 4
Two First Order ODEs (Independent) • Suppose 𝑣 1 and 𝑣 2 are independent • In a matrix form 5
ODE in Vector Form (Dependent) • Suppose 𝑣 1 and 𝑣 2 are dependent • In a matrix form 6
Systems of Differential Equations 7
Systems of Differential Equations • Given • Superposition 8
Systems of Differential Equations • For a single ODE • Let us try • Linear ODE = Eigenvalue problem 9
Eigenanalysis • Eigenanalysis • General solution • where 10
Eigenanalysis 11
Eigenanalysis • Linear Transformation • Solution 12
Eigenanalysis • 𝑤 - frame is decoupled by Ԧ 𝑦 1 and Ԧ 𝑦 2 13
Real Eigenvalues • Example 1 14
Real Eigenvalues 15
Phase Portrait • Geometric representation of the trajectories of a dynamical system in the phase plane 16
Real Eigenvalues • Example 2 17
Real Eigenvalues • Example 3 18
Different Eigenvectors with the Same Eigenvalues 19
De-coupling via Linear Transformation • Change variables 20
De-coupling via Linear Transformation • Change variables – Total amount of water – Difference in height • De-coupled 21
Trajectory Comparison 22
Systems of Differential Equations: Complex Eigenvalues 23
Complex Eigenvalues (Starting Oscillation) • 𝜇 can be a complex number 𝜇 = 𝜏 + 𝑘𝜕 24
Complex Eigenvalues (Starting Oscillation) • Example 1 25
Complex Eigenvalues (Starting Oscillation) • Example 1 26
What is the Corresponding Physical System? • Simple harmonic motion Revisited 27
Pure Oscillation 28
Complex Eigenvalues • Example 2 29
Pure Oscillation 30
Complex Eigenvalues • Example 3 31
Pure Oscillation 32
Complex Eigenvalues with Damping • Example 1 33
Oscillation with Damping 34
Mass-Spring-Damper System • Mass-spring-damper system 35
Mass-Spring-Damper System 36
Mass-Spring-Damper System 37
State Space Representation • Define states • State space 38
Eigenanalysis • Physical interpretation of 0 < 𝜂 < 1 39
Eigenvalues in S-plane • Oscillating with damping (under damping) 40
Eigenvalues in S-plane Pure oscillating Critical damping Over damping 41
The Second Order ODE • State space representation 42
Stability • Scalar systems • Matrix systems 43
Summary • Natural response with non-zero initial conditions • Systems of differential equations • Eigen-analysis • Complex eigenvalues – Their locations in s-plane • The second order ODE – Mass, spring, and damper system 44
Recommend
More recommend