natural response to non zero initial conditions
play

Natural Response to Non-zero Initial Conditions Prof. Seungchul Lee - PowerPoint PPT Presentation

Natural Response to Non-zero Initial Conditions Prof. Seungchul Lee Industrial AI Lab. The First Order ODE Solution will be exponential functions Unknown coefficient determined by initial conditions Stability unstable if


  1. Natural Response to Non-zero Initial Conditions Prof. Seungchul Lee Industrial AI Lab.

  2. The First Order ODE • Solution will be exponential functions – Unknown coefficient determined by initial conditions • Stability – unstable if 𝑙 > 0 – stable if 𝑙 < 0 2

  3. The First Order ODE 3

  4. The First Order ODE • 𝜐 : time constant – Large 𝜐 : slow response – Small 𝜐 : fast response 4

  5. Two First Order ODEs (Independent) • Suppose 𝑣 1 and 𝑣 2 are independent • In a matrix form 5

  6. ODE in Vector Form (Dependent) • Suppose 𝑣 1 and 𝑣 2 are dependent • In a matrix form 6

  7. Systems of Differential Equations 7

  8. Systems of Differential Equations • Given • Superposition 8

  9. Systems of Differential Equations • For a single ODE • Let us try • Linear ODE = Eigenvalue problem 9

  10. Eigenanalysis • Eigenanalysis • General solution • where 10

  11. Eigenanalysis 11

  12. Eigenanalysis • Linear Transformation • Solution 12

  13. Eigenanalysis • 𝑤 - frame is decoupled by Ԧ 𝑦 1 and Ԧ 𝑦 2 13

  14. Real Eigenvalues • Example 1 14

  15. Real Eigenvalues 15

  16. Phase Portrait • Geometric representation of the trajectories of a dynamical system in the phase plane 16

  17. Real Eigenvalues • Example 2 17

  18. Real Eigenvalues • Example 3 18

  19. Different Eigenvectors with the Same Eigenvalues 19

  20. De-coupling via Linear Transformation • Change variables 20

  21. De-coupling via Linear Transformation • Change variables – Total amount of water – Difference in height • De-coupled 21

  22. Trajectory Comparison 22

  23. Systems of Differential Equations: Complex Eigenvalues 23

  24. Complex Eigenvalues (Starting Oscillation) • 𝜇 can be a complex number 𝜇 = 𝜏 + 𝑘𝜕 24

  25. Complex Eigenvalues (Starting Oscillation) • Example 1 25

  26. Complex Eigenvalues (Starting Oscillation) • Example 1 26

  27. What is the Corresponding Physical System? • Simple harmonic motion Revisited 27

  28. Pure Oscillation 28

  29. Complex Eigenvalues • Example 2 29

  30. Pure Oscillation 30

  31. Complex Eigenvalues • Example 3 31

  32. Pure Oscillation 32

  33. Complex Eigenvalues with Damping • Example 1 33

  34. Oscillation with Damping 34

  35. Mass-Spring-Damper System • Mass-spring-damper system 35

  36. Mass-Spring-Damper System 36

  37. Mass-Spring-Damper System 37

  38. State Space Representation • Define states • State space 38

  39. Eigenanalysis • Physical interpretation of 0 < 𝜂 < 1 39

  40. Eigenvalues in S-plane • Oscillating with damping (under damping) 40

  41. Eigenvalues in S-plane Pure oscillating Critical damping Over damping 41

  42. The Second Order ODE • State space representation 42

  43. Stability • Scalar systems • Matrix systems 43

  44. Summary • Natural response with non-zero initial conditions • Systems of differential equations • Eigen-analysis • Complex eigenvalues – Their locations in s-plane • The second order ODE – Mass, spring, and damper system 44

Recommend


More recommend