multivalued feynman graphs
play

Multivalued Feynman Graphs Dirk Kreimer, Humboldt University, Berlin - PowerPoint PPT Presentation

Multivalued Feynman Graphs Dirk Kreimer, Humboldt University, Berlin work joint with Spencer Bloch ack: Marko Berghoff, Karen Vogtmann Hausdorff Center for Mathematics and BCTP, Bonn, Feb 19-March 02 2018 Motivation Outer Space Cutkoskys


  1. Multivalued Feynman Graphs Dirk Kreimer, Humboldt University, Berlin work joint with Spencer Bloch ack: Marko Berghoff, Karen Vogtmann Hausdorff Center for Mathematics and BCTP, Bonn, Feb 19-March 02 2018

  2. Motivation Outer Space Cutkosky’s theorem Multivalued Feynman graphs: 3-edge banana Markings and Monodromy Base-points and LSZ Conclusions Parametric Wonderland Discriminants and anomalous thresholds Example

  3. Motivation ◮ What type of multi-valued function does a Feynman graph generate? ◮ What is the role of graph complexes here? ◮ Understand Fubini, iterated Feynman integrals and general sheet structure. ◮ Cutkosky Rules How often can we cut, what do we learn?

  4. Literature ◮ Spencer Bloch, DK Cutkosky rules and Outer Space , [arXiv:1512.01705 [hep-th]. ◮ Marc Culler, Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91119. ◮ Allen Hatcher, Karen Vogtmann Rational Homology of Aut(F n ) , Math. Research Lett. 5 (1998) 759-780. ◮ James Conant, Allen Hatcher, Martin Kassabov, Karen Vogtmann, Assembling homology classes in automorphism groups of free groups , Commentarii Math. Helv. 91 (2016), 751-806. ◮ Kai-Uwe Bux, Peter Smillie, Karen Vogtmann, On the bordification of Outer Space , arXiv:1709.01296. ◮ Spencer Bloch, DK, Feynman amplitudes and Landau singularities for 1-loop graphs , [arXiv:1007.0338 [hep-th]]. 10.4310/CNTP.2010.v4.n4.a4. Commun.Num.Theor.Phys. 4 (2010) 709-753. ◮ Spencer Bloch, DK, Mixed Hodge Structures and Renormalization in Physics , arXiv:0804.4399 [hep-th], DOI:10.4310/CNTP.2008.v2.n4.a1, Commun. Num. Theor. Phys. 2 , 637 (2008). ◮ Marko Berghoff, Feynman amplitudes on moduli spaces of graphs , arXiv:1709.00545. ◮ Michael Borinsky, Algebraic lattices in QFT renormalization , Letters in Mathematical Physics, Volume 106 , Issue 7, July 2016, Pages 879-911.

  5. A cell complex for graphs: Outer Space Useful concepts for the study of amplitudes: ◮ Outer Space itself as a cell-complex with a corresponding spine and partial order defined from shrinking edges; ◮ a cubical chain complex resulting from a boundary d which acts on pairs (Γ , F ), F a spanning forest of Γ, ◮ a bordification which blows up missing cells at infinity. The use of metric graphs suggests itself in the study of amplitudes upon using the parametric representation: the parametric integral is then the integral over the volume of the open simplex σ Γ assigned to Γ in Outer Space. Coloured edges reflect the possibility of different masses in the propagators assigned to edges. External edges are not drawn. Momentum conservation allows to incorporate them by connecting external vertices to a distinguished vertex v ∞ .

  6. Cutkosky’s theorem No loops formed by edges ∈ E ′ , else Fubini, then: Theorem (Cutkosky) Assume the quotient graph G ′′ has a physical singularity at an external momentum point p ′′ ∈ ( � V ′′ R D ) 0 , i.e. the intersection � e ∈ E ′′ Q e of the propagator quadrics associated to edges in E ′′ has such a singularity at a point lying over p ′′ . Let p ∈ ( � V R D ) 0 be an external momentum point for G lying over p ′′ . Then the variation of the amplitude I ( G ) around p is given by Cutkosky’s formula var ( I ( G )) = ( − 2 π i ) # E ′′ � � e ∈ E ′′ δ + ( ℓ e ) . (1) � e ∈ E ′ ℓ e The core co-product on graphs gives m (Φ R ⊗ Φ CC P )∆ c which allows to reduce the general case to the desired case.

  7. Two triangular cells for the triangle graph: a ∪ c c b c a b ∪ ca a b b c + − a ∪ b − + − + c c c ∼ ∼ b ∪ c a a a b ∪ c ∼ a a b b b Exchange of yellow and red edges equals an orientation change for the loop!

  8.   1 0 0 ( B 2 ( s ; m 2 r , m 2 y ) − B 2 ( m 2 y ; m 2 r , m 2 V ry ( s , m 2 r , m 2 y )) y ) 0     Φ R (∆)( s , p 2 1 , p 2 2 ; m 2 r , m 2 y , m 2 1 ln a + b 1 √ √ b ) a − b s , p 2 1 , p 2 s , p 2 1 , p 2 2 2 ∼    0 0          b ∪ c   b ∪ c a   a 0       c c c       a a   a b b b

  9. b a ∪ c a ∪ b ∪ c a ∪ b ∪ c a c b c a b ∪ c a c a a ∪ b c a ∪ b c ∪ b b c a b b b a ∪ b ∪ c a ∪ c a ∪ c a ∪ b ∪ c a ∪ b ∪ c c a a c a b a c b ∪ c c b a ∪ b b ∪ c b b ∪ a c a b c ∪ a a ∪ b ∪ c a ∪ b ∪ c

  10. Second example: the Dunce’s cap A C C B A D b D B D a B c C B C A A D Corners A , B , C , D not part of OS.

  11. The Hasse diagram of a partition of vertices relates to an ordering abc a | bc ab | c a | b | c of the edges of T : b b b b a a a a c c c c b c a b ∪ c a ∪ b a c

  12. In fact, it is worth to consider all five spanning trees of the Dunce’s cap given with spanning trees and markings: b b b b b b y xy y x y yx − 1 y x a a a a x a a xy c c c c c c b b b b b y y a a a a a c c c c c With five spanning trees each having two edges we get ten edge-ordered spanning trees. Three of them give rise to the leftmost Cutkosky cut in the lower row, and three of them to the second graph from left. The next two graphs in the bottow row refer to the same Cutkosky cut, but this time the internal edges connecting the vertices b , c on one side of the partition form a loop, which has two possible spanning trees, and both graphs can be generated by two of the ten edge-ordered spanning trees, which completes the tally.

  13. The boundary operator d of the cubical cell complex for the pair of the Dunce’s cap with say the red-yellow spanning tree delivers the entries of a cube b b y y a a c c b b b y y a a a x x c c c x y x y

  14. This cube then delivers the Hodge matrices from its components: d y y y − + = y − x a x x x x = 0 d y y − x y d = − d = y y x y x 0 0 0 0 0 0 x x

  15. This iteration of subgraphs is governed by the co-action ∆ c : H ⊥ → H ⊥ ⊗ H of the core coproduct ∆ c on the Hopf algebra of tadpole free Feynman graphs H ⊥ = H / H Ω : ∆ c + = ⊗ ⊗ ⊗ + The terms on the right correspond to three flags of sub-/co-graphs, corresponding to three possible ways of computing the amplitude as an iterated integral over 1-loop subgraphs. That the results agree along principal sheets needs OPE and locality to work. � � ˙ � Φ MV flags F Φ MV ( f 1 ) ◦ · · · ◦ Φ MV ( G ) ∼ ( f | G | ) , R R R � � d 4 l | G | Φ mv R ( f ′ d 4 l 1 Φ mv where F = { f 1 , . . . , f | G | } → | G | ) . . . R ( f 1 ). We need Φ R ( H Ω ) = 0

  16. the bubble b 2 We start with the 2-edge banana, a bubble on two edges with two different internal masses m b , m r , indicated by two different colours: We define the K˙ allen function λ ( a , b , c ) := a 2 + b 2 + c 2 − 2( ab + bc + ca ) , and find by explicit integration Φ R ( b 2 )( s , s 0 ; m 2 r , m 2 b ) =  � �  r , m 2 ln m 2 r + m 2 r , m 2 − m 2 r − m 2 ln m 2 λ ( s , m 2 b ) b − s − λ ( s , m 2 b )  r b =  � m 2 2 s r + m 2 r , m 2 2 s  m 2 λ ( s , m 2 b − s + b ) b  � �� � B 2 ( s )   − { s → s 0 }  . � �� � B 2 ( s 0 )

  17. It is particularly interesting to compute the variation using Cutkosky’s theorem � ∞ � ∞ √ dk 0 δ + ( k 2 0 − t − m 2 r ) δ + (( k 0 − q 0 ) 2 − t − m 2 Var (Φ R ( b 2 )) = 4 π b ) . tdt 0 −∞ The integral gives =: V rb ( s ; m 2 r , m 2 b ) � �� � �� � λ ( s , m 2 r , m 2 b ) Var (Φ R ( b 2 ))( s , m 2 r , m 2 × Θ( s − ( m r + m b ) 2 ) . b ) = 2 s Note λ ( s , m 2 r , m 2 b ) = ( s − ( m r + m b ) 2 )( s − ( m r − m b ) 2 ). We regain Φ R ( b 2 ) from Var (Φ R ( b 2 )) by a subtracted dispersion integral: � ∞ Φ R ( b 2 ) = s − s 0 Var (Φ R ( b 2 )( x )) ( x − s )( x − s 0 ) dx , π 0 We define a multi-valued function Φ R ( b 2 ) mv ( s , m 2 r , m 2 b ) := Φ R ( b 2 )( s , m 2 r , m 2 b ) + 2 πı Z V rb ( s ) . Splitting: s < ( m r − m b ) 2 , ( m r − m b ) 2 < s < ( m r + m b ) 2 , ( m r + m b ) 2 < s .

  18. b 3 We now consider the 3-edge banana b 3 on three different masses. The resulting function Φ R ( b 3 ) has a structure similar to the dilogarithm function Li 2 ( z ). As a multi-valued function, we can write the latter as 2 ( z ) = Li 2 ( z ) + 2 πı Z ln z + (2 πı ) 2 Z × Z . Li mv We will find multi-valued functions � V ij ( k 2 )( k 2 ; m 2 i , m 2 j ) I ij d 4 k (2) k ( n 1 , n 2 )( s ) = Φ R ( b 3 )( s ) + 2 πı n 1 ( k + q ) 2 − m 2 k +(2 πı ) 2 | m 2 k − s || m 2 i − m 2 j | n 1 n 2 . 2 s r ( n 1 , n 2 )( s ) ∼ I yr We regard I by b ( n 1 , n 2 )( s ) ∼ I rb y ( n 1 , n 2 )( s ) as equivalent, with equivalence established by equality along the principal sheet.

  19. �� � � � � �� , , , , , . Let us compute � d 4 kd 4 l δ + ( k 2 − m 2 b ) δ + ( l 2 − m 2 r ) δ + (( k − l + q ) 2 − m 2 Var (Φ R ( b 3 )( s ) = y ) . Using Fubini, this can be written in three different ways in accordance with the flag structure: � b ) δ + (( k + q ) 2 − m 2 d 4 k Var (Φ R ( b 2 ))( k 2 , m 2 r , m 2 Var (Φ R ( b 3 )) = y ) , or � y ) δ + (( k + q ) 2 − m 2 d 4 k Var (Φ R ( b 2 ))( k 2 , m 2 b , m 2 Var (Φ R ( b 3 )) = r ) , or � r ) δ + (( k + q ) 2 − m 2 d 4 k Var (Φ R ( b 2 ))( k 2 , m 2 y , m 2 Var (Φ R ( b 3 )) = b ) .

Recommend


More recommend