multiphase flows
play

multiphase flows Application to evaporation phenomena Olivier Le - PowerPoint PPT Presentation

Dynamic relaxation processes in compressible multiphase flows Application to evaporation phenomena Olivier Le Mtayer Aix-Marseille University, Polytech Marseille UMR CNRS 7343 Some industrial applications where evaporation is crucial Fuel


  1. Dynamic relaxation processes in compressible multiphase flows Application to evaporation phenomena Olivier Le Métayer Aix-Marseille University, Polytech Marseille UMR CNRS 7343

  2. Some industrial applications where evaporation is crucial Fuel injectors at high pressure Cryogenic injection device in space launcher BLEVE phenomena (Security) : rapid depressurization of liquefied gas + combustion

  3. Typical physical processes we are interested in Low pressure Liquid flow from a Valve/diaphragm chamber high pressure chamber  « Flashing » (rapid depressurization)  Liquid/vapor mixture (drops, bubbles, pockets, ,…) generated by the initial pressure ratio  Cavitation created by geometric  Drops evaporation and jet explosion singularities (strong rarefaction waves) Two-velocities flow (inter-penetration) Interface problems How can be solved the multiphase flow when the topology strongly varies ? A way is to consider relaxation effects

  4. Plan  Description of the non-equilibrium multiphase flow model  Presentation of the relaxation effects  Some multidimensional numerical results

  5. Non-equilibrium multiphase compressible flow model

  6. Multiphase compressible flow model  Initially proposed by (Baer & Nunziato,IJMF,1986) for two phases  Each phase has its own set of equations and associated variables (velocity, pressure temperature, entropy,…) :   α     α k u . 0  I k t     ( )     k . ( u ) 0  k  t e ( P , ) + Equation of state : k k k            ( u )       ρ α k . u u P I P  k I k t           ( E )       ρE α k . P u P u .  k I I k t  Solved by the Discrete Equations Method (Abgrall & Saurel, JCP, 2003 ; Saurel & al., JFM, 2003 ; Chinnayya & al., JCP, 2004 ; Le Métayer & al., JCP, 2005 ; Saurel & al., IJNMF, 2007 ; Le Métayer & al., JCP, 2011)

  7. Discrete Equations Method : Godunov’s concept applied to multiphase cells •Godunov’s method =averaging procedure by solving a single Riemann problem at each cells interface Cell (i+1) Cell (i-1) Cell i Fixed control volume = volume filled with the fluid • DEM=averaging procedure by solving Riemann problems between pure fluids at each cells interface Cell (i-1) Cell i Cell (i+1)       Fixed control volume = sum of the sub-volumes filled with the fluids Each phase has a time-dependent sub-volume (volume fraction)

  8. Major contributions of DEM (1)  Discrete equations traducing the time evolution of phases and mixture variables are obtained = Numerical scheme  When dealing with a two-phases bubbly flow, a continuous model has been obtained :   α α All interface variables are determined !      μ 1 1 u P P   I 1 2 t x P P  1 2            ρu α 2 Z Z Z u Z u P ( u )         1 2 P λ 1 1 2 2 1 1 1 u P u u I  1 1    I I 2 1  Z Z t x x 1 2 Z Z           1 2 ρE α     ( E ) P u       λu μP 1 1 1 P u P P u u    I I I 1 2 I 2 1 t x x Interfacial area between phases A Z Z A     I 1 2 I   Z Z Z Z 1 2 1 2  µ and λ express the rates at which pressure and velocity equilibrium are reached respectively

  9. Major contributions of DEM (2)  This non-equilibrium model is able to treat simultaneously : - mixtures with several velocities, temperatures,… - material interfaces (contact) - permeable interfaces (interfaces separating a cloud of drops and a gas for example,…)

  10. Evaporation effects  This model is completed by heat and mass transfer source terms (evaporation, condensation) at infinite rates (relaxations)  Relaxation processes (at infinite rate) allow the obtention of solutions in limit cases corresponding to reduced models.  They are particularly relevant when : - the interfacial area and the flow topology are unknown, - the Direct Numerical Simulation of interface problems is considered.

  11. Two-phase compressible flow model + relaxation terms Pressure Heat Velocity Mass Hyperbolic relaxation transfer relaxation transfer             m α μ 1 u . P P  I 1 1 2 ~  t I     ( )       m 1 .( u )  1 t               ( u )          ρ α  ~ 1 λ  . u u P I P  u u m u  I 1 1 2 1 I t        ~           ( E )                 ρE α μ λ 1 m H . P u P u . P P P u . u u H T T  I 1 I I 1 I 1 2 T 2 1 I 2 1 t     ( )      2 .( u )  m  2 t             ( u )           ρ α   2 ~  . u u P I P   λ m u u u  2 I 1 t I 2 1              ( E )       ~             λ    ρE α μ 2 u . u u H T T m H . P u P u . P P P  I I 1 I 2 1 T 2 1 I 2 I 1 2 t ~      m ( g g ) I 1 2

  12. Relaxation coefficients  µ and λ express the rate at which pressure and velocity equilibria are reached respectively :         μ λ P P u u 1 2 2 1  Mechanical interactions (drags, compressibility ratio) between phases  H T expresses the rate at which temperature equilibrium is reached :     Heat exchange between phases H T T T 2 1  ν expresses the rate at which Gibbs free energy equilibrium is reached : ~       Mass transfer (evaporation/condensation process) m ( g g ) I 1 2 μ , H T , ν → ∞ Instantaneous exchanges : relaxation effects

  13. Relaxation effects at infinite rates

  14. Hierarchy of compressible flow models : reduced models Multi-velocity flow model Non-equilibrium flows Mechanical (u 1 ,u 2 ,p 1 ,p 2 ,T 1 ,T 2 ,g 1 ,g 2 ) relaxation (velocity and pressure) Single-velocity flow model  ,    Interface problems Thermal (u,p,T 1 ,T 2 ,g 1 ,g 2 ) relaxation (temperature)   H T Multi-species Euler mixture model Chemical Thermal equilibrium flows relaxation (Gibbs free (u,p,T, g1,g2 ) energy)    Homogeneous Euler model Thermodynamic equilibrium flows (u,p,T,g)

  15. Velocity relaxation procedure : λ → ∞  α 1  0  Momentum and energy t  1  cst   conservation 1  ( ) 0   ( ) t   1 Y cst       1  ( u )    λ 1 u u  2 1  t ( )   2 Y cst    ( E )      2   1 λ u . u u  I 2 1 t      *   u Y u Y u 2  ( ) 1 1 2 2 0  t     1      * * * e e ( u u ).( u u )      ( u )   1 1 1 1  λ 2 2 - u u  2 1 t     1     * * *   e e ( u u ).( u u )  ( E )     2 2 2 2   2 2 λ - u . u u  I 2 1 t EOS of both phases are not used explicitly

  16. Pressure relaxation procedure : μ → ∞  α 1     μ P P  1 2  t ( )   1 Y cst Mass and energy    1 1  ( ) 0 conservation   t ( )   2  Y cst    1  2 ( u ) Use of EOS 0   t u 1   cst * * * e ( p , )   ( E )   1 1    1 μ P P P   I 1 2 u 2  t  cst * * * e ( p , )   2  2 2 ( )   0 1 1       t * * e e p      1 1   *   2  ( u ) 1 1 0     t * * 1 1 ( p )      * * 1 e e p       ( E ) 2 2 *       2  μ * * P P P 2 2 ( p )  I 1 2 2 t 1 Y Y Function of the final   1 2    * * * * ( p ) ( p ) relaxed pressure only 1 2 When considering ideal gas or ‘Stiffened Gas’ EOS an analytical relation is available for the pressure

Recommend


More recommend