multifractality in detrended human heart beat increment
play

Multifractality in Detrended Human Heart Beat Increment Yue-Kin - PowerPoint PPT Presentation

Multifractality in Detrended Human Heart Beat Increment Yue-Kin Tsang Scripps Institution of Oceanography University of California, San Diego Emily S. C. Ching Department of Physics The Chinese University of Hong Kong The Cardiac Pump


  1. Multifractality in Detrended Human Heart Beat Increment Yue-Kin Tsang Scripps Institution of Oceanography University of California, San Diego Emily S. C. Ching Department of Physics The Chinese University of Hong Kong

  2. The Cardiac Pump ❄ Right ✘ ✘ ✘ ✾ ✘ ✘ atrium ✘ ✘ ✘ ✾ ◗ ◗ ◗ ◗ Left atrium ◗ ❈ ◗ ❈ ◗ ◗ ❈ ◗ Left ventricle ❈ ❈ ✻ ❈ Right ventricle

  3. The Cardiac Pump electric impulse initiated in the sinoatrial (SA) node SA node spreads to the atria ◗ ◗ — atrial contraction ◗ ❄ ❅ ❅ ❅ ❘

  4. The Cardiac Pump electric impulse initiated in the sinoatrial (SA) node AV node spreads to the atria ❩❩❩❩❩❩ — atrial contraction impulse reaches the ✄✄ ✗ ❩ ■ ❅ ❅ atrioventricular (AV) node ✄ ❅ and is conducted to the ✄ ventricles — ventricular contraction delay in the passage of the impulse occurs in the AV node

  5. Heart Beat Intervals Electrocardiogram (ECG) RRi 55 56 57 58 59 60 61 time (second) P-wave : atrial activation QRS complex : ventricular activation T-wave : recovery phase of ventricular RR-intervals (RRi) — measure of heart rate

  6. Heart Rate Variability (HRV) Time series of RRi : b ( i ) 1.2 1.0 b(i) 0.8 0.6 0.4 0 10000 20000 30000 40000 50000 i 3 PDF of b 2 1 0 0.6 0.7 0.8 0.9 1.0 1.1 0.5 b

  7. Reasons to study HRV To understand how the autonomic nervous system (ANS) control heart rate sympathetic branch of the ANS increases heart rate and parasympathetic branch decreases heart rate both branches are active and interacts, parasympathetic effects usually dominate parasympathetic branch affects heart rate with a much shorter delay Abnormalities in HRV have prognostic significance healthy human RRi shows multifractality multifractality lost in congestive heart failure condition P . Ch. Ivanov et al., Multifractality in human heartbeat dynamics, Nature 399 , 461 (1999)

  8. Multifractal A timeseries X ( i ) has different statistical properties at different scales. ∆ n X ( i ) ≡ X ( i + n ) − X ( i ) (1) Probability density function of ∆ n X ( i ) P n (∆ n X ) changes shape with n (2) Structure function S q ( n ) ≡ �| ∆ n X | q � ∼ n ζ q ζ q is a nonlinear function of q

  9. Multifractal ∆ n X (1) ⇔ (2) Let Y = �| ∆ n X | 2 � 1 / 2 P n (∆ n X ) has same shape for different n ¯ ⇔ P n ( Y ) is independent of n � | Y | q ¯ �| Y | q � = P n ( Y ) dY is independent of n �| δ n X | q � S q ( n ) �| Y | q � = [ S 2 ( n )] q/ 2 ∼ n ζ q − qζ 2 / 2 �| δ n X | 2 � q/ 2 = ζ q = q 2 ζ 2 scale-invariant P n (∆ n X ) ⇐ ⇒ ζ q ∝ q

  10. An Example from Fluid Turbulence Multifractal scaling in temperature increments ∆ n θ from turbulent thermal convective experiments: 2 n=4 0 n=32 n=256 log P n ( ∆ n θ) n=4096 -2 ζ q / ζ 2 1 -4 -6 0 -6 -4 -2 0 2 4 6 0 1 2 3 4 q ∆ n θ [ data from B. Castaing et al., J. Fluid Mech. 204 ,1 (1989) ]

  11. Multifractality in Healthy Heart Rate Healthy heart rate (RRi) increments ∆ n b from data of daytime normal sinus rhythm: 0 n=4 n=32 n=256 log P n ( ∆ n b) n=4096 -2 1 ζ q / ζ 2 -4 -6 0 -4 -2 0 2 4 0 1 2 3 q ∆ n b [ data from http://physionet.org ]

  12. Scale-invariant Detrended RRi ? “scale-invariance in the PDF of detrended healthy human heart rate increments” A detrend procedure for non-stationary timeseries: 1. B ( i ) = � i j =1 b ( j ) 2. divide B ( i ) into segments of size 2 n 3. fit B ( i ) in each segment with the best d -th order polynomial, p ( n ) d ( i ) 4. B ∗ ( i ) = B ( i ) − p ( n ) d ( i ) (“trend” removed) 5. ∆ n B ∗ ( i ) = B ∗ ( i + n ) − B ∗ ( i ) P n (∆ n B ∗ ) is scale-invariant K. Kiyono et al., Phys. Rev. Lett. 93 ,17 (2004)

  13. PDF of ∆ n B ∗ in Healthy Heart Rate 0 n=16 n=64 -1 n=256 log P n ( ∆ n B * ) n=1024 -2 -3 -4 -5 -6 -4 -2 0 2 4 ∆ n B * But isn’t healthy heart rate multifractal !?

  14. Detrended Heart Rate b ∗ ( i ) ∆ n B ∗ ( i ) is actually related to the sum of b ( i ) ∆ n B ∗ ( i ) = B ∗ ( i + n ) − B ∗ ( i ) B ( i + n ) − B ( i ) − [ p ( n ) d ( i + n ) − p ( n ) = d ( i )] i + n b ( j ) − ∆ n p ( n ) � = d ( i ) j = i +1 A natural definition of detrended heart rate b ∗ ( i ) is i � B ∗ ( i ) ≡ b ∗ ( j ) j =1 i + n � ⇒ ∆ n B ∗ ( i ) = b ∗ ( j ) j = i +1 b ∗ ( i ) = B ∗ ( i ) − B ∗ ( i − 1)

  15. Structure function for ∆ n b ∗ ( i ) ∆ n b ∗ ( i ) = ∆ n b ( i ) − [∆ n p ( n ) d ( i ) − ∆ n p ( n ) d ( i − 1)] 12 10 log 2 S q (n) 8 6 0.2 4 0.6 1.0 1.6 2 2.0 2.6 3.0 0 2 4 6 8 10 12 log 2 n

  16. ζ q for Healthy Heart Rate ∆ n b * ∆ n B * 1 ∆ n b ζ q / ζ 2 0 0 1 2 3 q The detrended healthy heart rate b ∗ ( i ) is indeed multifractal

  17. ζ q for Pathological Heart Rate Data from congested heart failure patients: ∆ n b * ∆ n B * 1 ∆ n b ζ q / ζ 2 0 0 1 2 3 q Scale-invariance of P n (∆ n B ∗ ) is a characteristic independent of the multifractality of HRV

  18. Detrend Analysis in Turbulence Follow the ideas of detrended analysis of HRV: θ ( t i ) = temperature measurement from thermal convective experiments: i � Θ( t i ) ≡ θ ( t j ) j =1 Θ ∗ ( t i ) ≡ Θ( t i ) − p ( n ) d ( t i ) ∆ n Θ ∗ ( t i ) = Θ ∗ ( t i + n ) − Θ ∗ ( t i ) i Θ ∗ ( t i ) ≡ � θ ∗ ( t j ) j =1

  19. Detrend Analysis in Turbulence ∆ n θ ∗ ∆ n Θ ∗ 1 ∆ n θ ζ q / ζ 2 0 0 1 2 3 q PDF of ∆ n Θ ∗ is not scale-invariant.

  20. Detrend Analysis in Turbulence n=4 0 n=32 ∗ ) n=256 n=4096 log P n ( ∆ n Θ -2 -4 -6 -4 -2 0 2 4 -6 6 ∗ ∆ n Θ

  21. Detrend Analysis in Turbulence i � B ( i ) ≡ b ( j ) Recall : j =1 i + n b ( j ) − ∆ n p ( n ) � ∆ n B ∗ ( i ) = d ( i ) j = i +1 ∆ n B ∗ ( i ) = ∆ n B ( i ) − ∆ n p ( n ) = ⇒ d ( i ) ∆ n Θ ∗ ( i ) = ∆ n Θ( i ) − ∆ n p ( n ) d ( i ) �| ∆ n B ( i ) | q � ∼ n q Now, �| ∆ n Θ( i ) | q � ∼ n q So p ( n ) d ( i ) is responsible for the different scaling behav- ior in �| ∆ n B ∗ ( i ) | q � and �| ∆ n Θ ∗ ( i ) | q �

  22. Summary We clarify that the scale-invariant of P n (∆ n B ∗ ) in healthy heart rate is for the sum of detrended heart rate b ∗ P n (∆ n b ∗ ) for healthy heart rate increments is indeed scale dependent, as expected from the multifractality of b . P n (∆ n B ∗ ) is scale-invariant in pathological heart rate in patients suffering from congestive heart failure P n (∆ n Θ ∗ ) is scale dependent in the multifractal temperature measurements in turbulent thermal convective flows.

Recommend


More recommend