multi paradigm language engineering and equation based
play

Multi-Paradigm Language Engineering and Equation-Based - PowerPoint PPT Presentation

8 July 2008 Equation-based Object-Oriented Languages and Tools Paphos, Cyprus Multi-Paradigm Language Engineering and Equation-Based Object-Oriented Languages Hans Vangheluwe Modelling, Simulation and Design Lab (MSDL) School of Computer


  1. 8 July 2008 Equation-based Object-Oriented Languages and Tools Paphos, Cyprus Multi-Paradigm Language Engineering and Equation-Based Object-Oriented Languages Hans Vangheluwe Modelling, Simulation and Design Lab (MSDL) School of Computer Science, McGill University, Montr´ eal, Canada Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 1

  2. Overview 1. Multi-Paradigm Modelling (MPM) 2. Domain-Specific Modelling 3. Language Engineering and MPM Tools 4. MPM for EOOLT 5. EOOLT for MPM 6. Conclusions Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 2

  3. Modelling a Variety of Complex Systems . . . Multi-Paradigm modelling (minimize accidental complexity) • at most appropriate level of abstraction • using most appropriate formalism(s) • with transformations as first-class models Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation 80(9):433–450, September 2004. Special Issue: Grand Challenges for Modeling and Simulation. Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 3

  4. Domain-Specific (Visual) Modelling: Waste Water Treatment Plants (WWTPs) NATO’s Sarajevo WWTP www.nato.int/sfor/cimic/env-pro/waterpla.htm Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 4

  5. DS(V)M Environment www.hemmis.com/products/west/ Henk Vanhooren, Jurgen Meirlaen, Youri Amerlinck, Filip Claeys, Hans Vangheluwe, and Peter A. Vanrolleghem. WEST: Modelling biological wastewater treatment. Journal of Hydroinformatics, 5(1):27-50, 2003. Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 5

  6. WWTP (domain-specific) model settler effluent influent aeration_tank mixer f_influent f_mixed f_processed f_out f_bacteria Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 6

  7. Transformation from WWTP to . . . influent aeration_tank mixer f_influent f_influent f_mixed f_mixed f_processed TRANSFORM TRANSFORM TRANSFORM f_bacteria C_aeration f_influent 0.9 aeration_fraction C_influent f_influent f_mixed f_mixed 0.0 f_processed OUT OUT I f_bacteria Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 7

  8. ... its meaning (steady-state abstraction): Causal Block Diagram (CBD) one 1.0 C_settling C_aeration 0.6 OUT 0.9 settling_fraction aeration_fraction − f_out negated f_influent f_mixed f_processed dump_fraction C_influent OUT OUT OUT 10.0 I I effluent OUT I f_bacteria Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 8

  9. Meaning of the CBD  f influent = C influent  f bacteria C bacteria =    f mixed = f influent + f bacteria one       1.0 aeration fraction C aeration  = C_settling C_aeration 0.6 OUT  0.9 settling_fraction aeration_fraction  − f processed = aeration fraction ∗ f mixed  f_out f_influent f_mixed f_processed negated      = C_influent settling fraction C settling OUT OUT OUT = 10.0 I I   effluent   dump_fraction C_bacteria    1.0 negated = − settling fraction  f_dump f_bacteria   OUT I one = 1 dump    dump fraction = one + negated   f dump = f processed ∗ dump fraction   f out settling fraction ∗ f processed = Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 9

  10. DS(V)M example application: conference registration (Google Android) Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 10

  11. DS(V)M example application, the PhoneApps Domain-Specific model Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 11

  12. Only transform . . . ConferenceRegistrationApps 1 PhoneApps 2 3 StateCharts AndroidAppScreens 5 4 AndroidAppFiles 6 Actual files (AndroidManifest.xml, PhoneApp.java, PhoneAppStateChart.java, screen_*.xml) Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 12

  13. Why DS(V)M ? (as opposed to General Purpose modelling) • match the user’s mental model of the problem domain • maximally constrain the user (to the problem at hand) ⇒ easier to learn ⇒ avoid errors • separate domain-expert’s work from analysis/transformation expert’s work Anecdotal evidence of 5 to 10 times speedup Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley 2008. Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 13

  14. Building (DS)(V)M Tools Effectively . . . • development cost of DS(V)M Tools may be prohibitive ! • we want to effectively (rapidly, correctly, re-usably, . . . ) 1. Specify DS(V)L syntax : – abstract ⇒ meta-modelling – concrete (textual/visual) 2. Specify DS(V)L semantics : transformation 3. Model (and analyze and execute) model transformations : ⇒ graph rewriting ⇒ model everything (in the most appropriate formalism, at the appropriate level of abstraction) Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 14

  15. Dissecting a Formalism Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 15

  16. Modelling Modelling Languages Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 16

  17. From now on: use AToM 3 Juan de Lara and Hans Vangheluwe. AToM 3 : A tool for multi-formalism and meta-modelling. Fundamental Approaches to Software Engineering (FASE). LNCS 2306, pages 174 – 188, 2002. Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 17

  18. A model in the PacMan Formalism Your score 0 (thanks to Reiko Heckel) Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 18

  19. Modelling Abstract Syntax (meta-model) ghostV3 gridTopV3 ghostLinkV3 Cardinalities: - To ghostLinkV3: 0 to N Cardinalities: Cardinalities: - To gridNodeCenter: 0 to 1 - To gridNodeCenter: 0 to N - From gridNodeCenter: 0 to 1 - From ghostV3: 0 to N gridNodeCenter Cardinalities: - To gridBottomV3: 0 to N gridLeftV3 gridRightV3 - From gridBottomV3: 0 to N - From pacLinkV3: 0 to N Cardinalities: - From foodLinkV3: 0 to N Cardinalities: - To gridNodeCenter: 0 to 1 - From scoreLinkV3: 0 to N - To gridNodeCenter: 0 to 1 - From gridNodeCenter: 0 to 1 - To gridLeftV3: 0 to N - From gridNodeCenter: 0 to 1 - From gridLeftV3: 0 to N - To gridRightV3: 0 to N - From gridRightV3: 0 to N - To gridTopV3: 0 to N ScoreBoard scoreLinkV3 - From gridTopV3: 0 to N Attributes: - From ghostLinkV3: 0 to N - score :: Integer Cardinalities: Actions: - To gridNodeCenter: 0 to N > create - From ScoreBoard: 0 to N Cardinalities: gridBottomV3 - To scoreLinkV3: 0 to N Cardinalities: pacLinkV3 - To gridNodeCenter: 0 to 1 foodLinkV3 - From gridNodeCenter: 0 to 1 Cardinalities: Cardinalities: - To gridNodeCenter: 0 to N - To gridNodeCenter: 0 to N - From pacmanV3: 0 to N - From pacFoodV3: 0 to N pacmanV3 pacFoodV3 Cardinalities: Cardinalities: - To pacLinkV3: 0 to N - To foodLinkV3: 0 to N Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 19

  20. Modelling Ghost Concrete Visual Syntax Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 20

  21. GhostLink Concrete Visual Syntax # Get n1, n2 end-points of the link n1 = self.in_connections_[0] n2 = self.out_connections_[0] # g1 and g2 are the graphEntity visual objects g0 = self.graphObject_ # the link g1 = n1.graphObject_ # first end-point g2 = n2.graphObject_ # second end-poing # Get the high level constraint helper and solver from Qoca.atom3constraints.OffsetConstraints import OffsetConstraints oc = OffsetConstraints(self.parent.qocaSolver) # The constraints oc.CenterX((g1, g2, g0)) oc.CenterY((g1, g2, g0)) oc.resolve() Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 21

  22. Model the GUI’s Reactive Behaviour ! in the Statechart formalism ( ++ ) challenge: find optimal formalism to specify GUI reactive behaviour Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 22

  23. Modelling Modelling Languages Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 23

  24. Specifying Model Transformations What is the “optimal” formalism ? Models are often graph-like ⇒ natural to express model transformation by means of graph transformation models. Tools: GME/GReAT, PROGRES, Fujaba, AGG, AToM 3 , GROOVE, . . . First three used in large industrial applications. Ehrig, H., G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of graph grammars and computing by graph transformation. 1999. World Scientific. Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 24

  25. Modellling PacMan Operational Semantics using Graph Grammar models note: for Denotational Semantics: map for example onto Petri Net Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 25

  26. Model Operational Semantics using GT Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 26

  27. PacMan Die rule Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 27

  28. PacMan Die rule LHS 3 5 1 2 4 Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 28

  29. PacMan Die rule RHS 3 5 1 Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 29

  30. PacMan Eat rule LHS 3 4 1 2 5 Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 30

  31. PacMan Eat rule RHS 1 2 5 scoreBoard = None scoreBoards = atom3i.ASGroot.listNodes[’ScoreBoard’] if (not scoreBoards): return else: scoreBoard = scoreBoards[0] scoreVal = scoreBoard.score.getValue() scoreBoard.score.setValue(scoreVal+1) scoreBoard.graphObject_.ModifyAttribute(’score’,scoreVal+1) Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 31

  32. PacMan Move rule LHS 7 8 6 9 10 Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 32

  33. PacMan Move rule RHS 7 1 6 9 10 Hans Vangheluwe hv@cs.mcgill.ca MPM and EOOLs 33

Recommend


More recommend