monitoring the coefficient of variation using ewma charts
play

MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS Philippe - PowerPoint PPT Presentation

MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS Philippe CASTAGLIOLA 1 , Giovanni CELANO 2 , Stelios PSARAKIS 3 1 Universit e de Nantes & IRCCyN UMR CNRS 6597, France 2 Universit` a di Catania, Catania, Italy 3 Athens University


  1. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  2. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). from one subgroup to another, µ k and σ k may change, but they are constrained by the relation γ k = σ k µ k = γ 0 when the process is in-control. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  3. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). from one subgroup to another, µ k and σ k may change, but they are constrained by the relation γ k = σ k µ k = γ 0 when the process is in-control. Control limits Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  4. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). from one subgroup to another, µ k and σ k may change, but they are constrained by the relation γ k = σ k µ k = γ 0 when the process is in-control. Control limits � α 0 F − 1 � = 2 | n , γ 0 LCL SH ˆ γ F − 1 � 1 − α 0 � = 2 | n , γ 0 UCL SH γ ˆ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  5. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). from one subgroup to another, µ k and σ k may change, but they are constrained by the relation γ k = σ k µ k = γ 0 when the process is in-control. Control limits � α 0 F − 1 � = 2 | n , γ 0 LCL SH ˆ γ F − 1 � 1 − α 0 � = 2 | n , γ 0 UCL SH γ ˆ where α 0 is the type I error rate (ex : α 0 = 0 . 0027). Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  6. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). from one subgroup to another, µ k and σ k may change, but they are constrained by the relation γ k = σ k µ k = γ 0 when the process is in-control. Control limits � α 0 F − 1 � = 2 | n , γ 0 LCL SH ˆ γ F − 1 � 1 − α 0 � = 2 | n , γ 0 UCL SH γ ˆ where α 0 is the type I error rate (ex : α 0 = 0 . 0027). Comments Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  7. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). from one subgroup to another, µ k and σ k may change, but they are constrained by the relation γ k = σ k µ k = γ 0 when the process is in-control. Control limits � α 0 F − 1 � = 2 | n , γ 0 LCL SH ˆ γ F − 1 � 1 − α 0 � = 2 | n , γ 0 UCL SH γ ˆ where α 0 is the type I error rate (ex : α 0 = 0 . 0027). Comments Simple two-sided “Shewhart-type” control chart. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  8. SH- γ chart (Kang et al., JQT 2007) General assumptions subgroups { X k , 1 , X k , 2 , . . . , X k , n } of size n are observed at time k = 1 , 2 , . . . . X k , j ∼ N ( µ k , σ k ). from one subgroup to another, µ k and σ k may change, but they are constrained by the relation γ k = σ k µ k = γ 0 when the process is in-control. Control limits � α 0 F − 1 � = 2 | n , γ 0 LCL SH ˆ γ F − 1 � 1 − α 0 � = 2 | n , γ 0 UCL SH γ ˆ where α 0 is the type I error rate (ex : α 0 = 0 . 0027). Comments Simple two-sided “Shewhart-type” control chart. Unefficient for detecting small change in γ . Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  9. EWMA- γ chart (Hong et al., JSKISE 2008) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  10. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  11. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Z k = (1 − λ ) Z k − 1 + λ ˆ γ k Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  12. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Z k = (1 − λ ) Z k − 1 + λ ˆ γ k Control limits Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  13. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Z k = (1 − λ ) Z k − 1 + λ ˆ γ k Control limits � λ (1 − (1 − λ ) 2 k ) LCL EWMA − γ = µ 0 (ˆ γ ) − K σ 0 (ˆ γ ) 2 − λ � λ (1 − (1 − λ ) 2 k ) UCL EWMA − γ = µ 0 (ˆ γ ) + K σ 0 (ˆ γ ) 2 − λ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  14. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Z k = (1 − λ ) Z k − 1 + λ ˆ γ k Control limits � λ (1 − (1 − λ ) 2 k ) LCL EWMA − γ = µ 0 (ˆ γ ) − K σ 0 (ˆ γ ) 2 − λ � λ (1 − (1 − λ ) 2 k ) UCL EWMA − γ = µ 0 (ˆ γ ) + K σ 0 (ˆ γ ) 2 − λ Approximations for µ 0 (ˆ γ ) and σ 0 (ˆ γ ) � � 0 − γ 2 � � 0 − 3 γ 4 − 7 γ 2 �� 1 + 1 � 0 − 1 � + 1 4 − 7 + 1 32 − 19 γ 2 3 γ 4 0 15 γ 6 0 0 µ 0 (ˆ γ ) γ 0 ≃ 4 n 2 32 n 3 4 128 n � 0 + 7 γ 4 + 3 γ 2 1 � 0 + 1 � + 1 � 0 + 3 � + 1 � + 3 � γ 2 8 γ 4 0 + γ 2 69 γ 6 0 0 σ 0 (ˆ γ ) γ 0 ≃ n 2 n 3 n 2 8 2 4 16 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  15. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Z k = (1 − λ ) Z k − 1 + λ ˆ γ k Control limits � λ (1 − (1 − λ ) 2 k ) LCL EWMA − γ = µ 0 (ˆ γ ) − K σ 0 (ˆ γ ) 2 − λ � λ (1 − (1 − λ ) 2 k ) UCL EWMA − γ = µ 0 (ˆ γ ) + K σ 0 (ˆ γ ) 2 − λ Approximations for µ 0 (ˆ γ ) and σ 0 (ˆ γ ) � � 0 − γ 2 � � 0 − 3 γ 4 − 7 γ 2 �� 1 + 1 � 0 − 1 � + 1 4 − 7 + 1 32 − 19 γ 2 3 γ 4 0 15 γ 6 0 0 µ 0 (ˆ γ ) γ 0 ≃ 4 n 2 32 n 3 4 128 n � 0 + 7 γ 4 + 3 γ 2 1 � 0 + 1 � + 1 � 0 + 3 � + 1 � + 3 � γ 2 8 γ 4 0 + γ 2 69 γ 6 0 0 σ 0 (ˆ γ ) γ 0 ≃ n 2 n 3 n 2 8 2 4 16 Comments Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  16. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Z k = (1 − λ ) Z k − 1 + λ ˆ γ k Control limits � λ (1 − (1 − λ ) 2 k ) LCL EWMA − γ = µ 0 (ˆ γ ) − K σ 0 (ˆ γ ) 2 − λ � λ (1 − (1 − λ ) 2 k ) UCL EWMA − γ = µ 0 (ˆ γ ) + K σ 0 (ˆ γ ) 2 − λ Approximations for µ 0 (ˆ γ ) and σ 0 (ˆ γ ) � � 0 − γ 2 � � 0 − 3 γ 4 − 7 γ 2 �� 1 + 1 � 0 − 1 � + 1 4 − 7 + 1 32 − 19 γ 2 3 γ 4 0 15 γ 6 0 0 µ 0 (ˆ γ ) γ 0 ≃ 4 n 2 32 n 3 4 128 n � 0 + 7 γ 4 + 3 γ 2 1 � 0 + 1 � + 1 � 0 + 3 � + 1 � + 3 � γ 2 8 γ 4 0 + γ 2 69 γ 6 0 0 σ 0 (ˆ γ ) γ 0 ≃ n 2 n 3 n 2 8 2 4 16 Comments More efficient than the SH- γ chart. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  17. EWMA- γ chart (Hong et al., JSKISE 2008) Monitored statistic Z k = (1 − λ ) Z k − 1 + λ ˆ γ k Control limits � λ (1 − (1 − λ ) 2 k ) LCL EWMA − γ = µ 0 (ˆ γ ) − K σ 0 (ˆ γ ) 2 − λ � λ (1 − (1 − λ ) 2 k ) UCL EWMA − γ = µ 0 (ˆ γ ) + K σ 0 (ˆ γ ) 2 − λ Approximations for µ 0 (ˆ γ ) and σ 0 (ˆ γ ) � � 0 − γ 2 � � 0 − 3 γ 4 − 7 γ 2 �� 1 + 1 � 0 − 1 � + 1 4 − 7 + 1 32 − 19 γ 2 3 γ 4 0 15 γ 6 0 0 µ 0 (ˆ γ ) γ 0 ≃ 4 n 2 32 n 3 4 128 n � 0 + 7 γ 4 + 3 γ 2 1 � 0 + 1 � + 1 � 0 + 3 � + 1 � + 3 � γ 2 8 γ 4 0 + γ 2 69 γ 6 0 0 σ 0 (ˆ γ ) γ 0 ≃ n 2 n 3 n 2 8 2 4 16 Comments More efficient than the SH- γ chart. The paper itself does not provide any thorough investigations (results obtained through simulation only). Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  18. New one-sided EWMA- γ 2 charts Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  19. New one-sided EWMA- γ 2 charts We suggest to ... Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  20. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ 1 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  21. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  22. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts 2 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  23. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  24. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  25. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 = max( µ 0 (ˆ k ) k Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  26. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  27. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k � λ + γ 2 ) + K + γ 2 ) UCL EWMA − γ 2 = µ 0 (ˆ 2 − λ + σ 0 (ˆ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  28. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k � λ + γ 2 ) + K + γ 2 ) UCL EWMA − γ 2 = µ 0 (ˆ 2 − λ + σ 0 (ˆ Downward EWMA- γ 2 chart γ 2 ) , (1 − λ − ) Z − γ 2 Z − = min( µ 0 (ˆ k − 1 + λ − ˆ k ) k Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  29. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k � λ + γ 2 ) + K + γ 2 ) UCL EWMA − γ 2 = µ 0 (ˆ 2 − λ + σ 0 (ˆ Downward EWMA- γ 2 chart γ 2 ) , (1 − λ − ) Z − γ 2 γ 2 ) Z − = min( µ 0 (ˆ k − 1 + λ − ˆ k ) , Z − = µ 0 (ˆ 0 k Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  30. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k � λ + γ 2 ) + K + γ 2 ) UCL EWMA − γ 2 = µ 0 (ˆ 2 − λ + σ 0 (ˆ Downward EWMA- γ 2 chart γ 2 ) , (1 − λ − ) Z − γ 2 γ 2 ) Z − = min( µ 0 (ˆ k − 1 + λ − ˆ k ) , Z − = µ 0 (ˆ 0 k � λ − γ 2 ) − K − γ 2 ) = µ 0 (ˆ 2 − λ − σ 0 (ˆ LCL EWMA − γ 2 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  31. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k � λ + γ 2 ) + K + γ 2 ) UCL EWMA − γ 2 = µ 0 (ˆ 2 − λ + σ 0 (ˆ Downward EWMA- γ 2 chart γ 2 ) , (1 − λ − ) Z − γ 2 γ 2 ) Z − = min( µ 0 (ˆ k − 1 + λ − ˆ k ) , Z − = µ 0 (ˆ 0 k � λ − γ 2 ) − K − γ 2 ) = µ 0 (ˆ 2 − λ − σ 0 (ˆ LCL EWMA − γ 2 γ 2 ) and σ 0 (ˆ γ 2 ) Approximations for µ 0 (ˆ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  32. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k � λ + γ 2 ) + K + γ 2 ) UCL EWMA − γ 2 = µ 0 (ˆ 2 − λ + σ 0 (ˆ Downward EWMA- γ 2 chart γ 2 ) , (1 − λ − ) Z − γ 2 γ 2 ) Z − = min( µ 0 (ˆ k − 1 + λ − ˆ k ) , Z − = µ 0 (ˆ 0 k � λ − γ 2 ) − K − γ 2 ) = µ 0 (ˆ 2 − λ − σ 0 (ˆ LCL EWMA − γ 2 γ 2 ) and σ 0 (ˆ γ 2 ) Approximations for µ 0 (ˆ � 3 γ 2 � γ 2 ) ≃ γ 2 0 µ 0 (ˆ 1 − 0 n Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  33. New one-sided EWMA- γ 2 charts We suggest to ... monitor γ 2 instead of γ (more efficient to monitor S 2 than S ). 1 define 2 EWMA one-sided charts (detect shifts more efficiently). 2 EWMA- γ 2 chart Upward EWMA- γ 2 chart Z + γ 2 ) , (1 − λ + ) Z + k − 1 + λ + ˆ γ 2 k ) , Z + γ 2 ) = max( µ 0 (ˆ 0 = µ 0 (ˆ k � λ + γ 2 ) + K + γ 2 ) UCL EWMA − γ 2 = µ 0 (ˆ 2 − λ + σ 0 (ˆ Downward EWMA- γ 2 chart γ 2 ) , (1 − λ − ) Z − γ 2 γ 2 ) Z − = min( µ 0 (ˆ k − 1 + λ − ˆ k ) , Z − = µ 0 (ˆ 0 k � λ − γ 2 ) − K − γ 2 ) = µ 0 (ˆ 2 − λ − σ 0 (ˆ LCL EWMA − γ 2 γ 2 ) and σ 0 (ˆ γ 2 ) Approximations for µ 0 (ˆ � � 3 γ 2 � � � 75 γ 2 �� γ 2 ) ≃ γ 2 γ 2 ) ≃ 0 γ 4 n − 1 + γ 2 2 4 20 0 γ 2 ) − γ 2 0 ) 2 µ 0 (ˆ 1 − , σ 0 (ˆ n + n ( n − 1) + − ( µ 0 (ˆ 0 n 2 n 0 0 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  34. ARL “local” optimization Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  35. ARL “local” optimization Shift τ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  36. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  37. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  38. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  39. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. τ ∈ (0 , 1) → decrease of the nominal coefficient of variation. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  40. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. τ ∈ (0 , 1) → decrease of the nominal coefficient of variation. τ > 1 → increase of the nominal coefficient of variation. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  41. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. τ ∈ (0 , 1) → decrease of the nominal coefficient of variation. τ > 1 → increase of the nominal coefficient of variation. Optimization Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  42. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. τ ∈ (0 , 1) → decrease of the nominal coefficient of variation. τ > 1 → increase of the nominal coefficient of variation. Optimization ARL = average number of samples before a control chart signals an “ out-of-control ” condition or issues a false alarm. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  43. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. τ ∈ (0 , 1) → decrease of the nominal coefficient of variation. τ > 1 → increase of the nominal coefficient of variation. Optimization ARL = average number of samples before a control chart signals an “ out-of-control ” condition or issues a false alarm. Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin ARL ( γ 0 , τγ 0 , λ, K , n ) , ( λ, K ) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  44. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. τ ∈ (0 , 1) → decrease of the nominal coefficient of variation. τ > 1 → increase of the nominal coefficient of variation. Optimization ARL = average number of samples before a control chart signals an “ out-of-control ” condition or issues a false alarm. Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin ARL ( γ 0 , τγ 0 , λ, K , n ) , ( λ, K ) subject to the constraint : ARL ( γ 0 , γ 0 , λ ∗ , K ∗ , n ) = ARL 0 = 370 . 4 . Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  45. ARL “local” optimization Shift τ γ 0 = in-control/nominal coefficient of variation. γ 1 = out-of-control coefficient of variation. τ = γ 1 γ 0 denotes the shift size. τ ∈ (0 , 1) → decrease of the nominal coefficient of variation. τ > 1 → increase of the nominal coefficient of variation. Optimization ARL = average number of samples before a control chart signals an “ out-of-control ” condition or issues a false alarm. Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin ARL ( γ 0 , τγ 0 , λ, K , n ) , ( λ, K ) subject to the constraint : ARL ( γ 0 , γ 0 , λ ∗ , K ∗ , n ) = ARL 0 = 370 . 4 . ARL is evaluated using a Brook & Evans’s type Markov chain approach. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  46. ARL “local” optimization (Markov chain) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  47. ARL “local” optimization (Markov chain) γ 2 ) and UCL into p Divide the interval between LCL = µ 0 (ˆ γ 2 )) / (2 p ). subintervals of width 2 δ , where δ = ( UCL − µ 0 (ˆ UCL H p H i +1 2 δ H i H i − 1 H 1 µ 0 (ˆ γ 2 ) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  48. ARL “local” optimization (Markov chain) γ 2 ) and UCL into p Divide the interval between LCL = µ 0 (ˆ γ 2 )) / (2 p ). subintervals of width 2 δ , where δ = ( UCL − µ 0 (ˆ UCL H p H i +1 2 δ H i H i − 1 H 1 µ 0 (ˆ γ 2 ) H j , j = 1 , . . . , p , represents the midpoint of the j th subinterval. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  49. ARL “local” optimization (Markov chain) γ 2 ) and UCL into p Divide the interval between LCL = µ 0 (ˆ γ 2 )) / (2 p ). subintervals of width 2 δ , where δ = ( UCL − µ 0 (ˆ UCL H p H i +1 2 δ H i H i − 1 H 1 µ 0 (ˆ γ 2 ) H j , j = 1 , . . . , p , represents the midpoint of the j th subinterval. γ 2 ) corresponds to the “restart state” feature. H 0 = µ 0 (ˆ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  50. ARL “local” optimization (Markov chain) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  51. ARL “local” optimization (Markov chain) The transition probability matrix Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  52. ARL “local” optimization (Markov chain) The transition probability matrix  · · ·  Q 0 , 0 Q 0 , 1 Q 0 , p r 0 Q 1 , 0 Q 1 , 1 · · · Q 1 , p r 1   Q r    . . . .   = . . . . P =   . . . .    0 T 1   · · · Q p , 0 Q p , 1 Q p , p r p   0 0 · · · 0 1 Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  53. ARL “local” optimization (Markov chain) The transition probability matrix  · · ·  Q 0 , 0 Q 0 , 1 Q 0 , p r 0 Q 1 , 0 Q 1 , 1 · · · Q 1 , p r 1   Q r    . . . .   = . . . . P =   . . . .    0 T 1   · · · Q p , 0 Q p , 1 Q p , p r p   0 0 · · · 0 1 Transient probabilities Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  54. ARL “local” optimization (Markov chain) The transition probability matrix  · · ·  Q 0 , 0 Q 0 , 1 Q 0 , p r 0 Q 1 , 0 Q 1 , 1 · · · Q 1 , p r 1   Q r    . . . .   = . . . . P =   . . . .    0 T 1   · · · Q p , 0 Q p , 1 Q p , p r p   0 0 · · · 0 1 Transient probabilities � µ 0 (ˆ γ 2 ) − (1 − λ + ) H i � � Q + � = F ˆ � n , γ 1 γ 2 i , 0 � λ + Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  55. ARL “local” optimization (Markov chain) The transition probability matrix  · · ·  Q 0 , 0 Q 0 , 1 Q 0 , p r 0 Q 1 , 0 Q 1 , 1 · · · Q 1 , p r 1   Q r    . . . .   = . . . . P =   . . . .    0 T 1   · · · Q p , 0 Q p , 1 Q p , p r p   0 0 · · · 0 1 Transient probabilities � µ 0 (ˆ γ 2 ) − (1 − λ + ) H i � � Q + � = F ˆ � n , γ 1 γ 2 i , 0 � λ + � µ 0 (ˆ γ 2 ) − (1 − λ − ) H i � � � = 1 − F ˆ Q − � n , γ 1 γ 2 � i , 0 λ − Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  56. ARL “local” optimization (Markov chain) The transition probability matrix  · · ·  Q 0 , 0 Q 0 , 1 Q 0 , p r 0 Q 1 , 0 Q 1 , 1 · · · Q 1 , p r 1   Q r    . . . .   = . . . . P =   . . . .    0 T 1   · · · Q p , 0 Q p , 1 Q p , p r p   0 0 · · · 0 1 Transient probabilities � µ 0 (ˆ γ 2 ) − (1 − λ + ) H i � � Q + � = F ˆ � n , γ 1 γ 2 i , 0 � λ + � µ 0 (ˆ γ 2 ) − (1 − λ − ) H i � � � = 1 − F ˆ Q − � n , γ 1 γ 2 � i , 0 λ − � H j + δ − (1 − λ ) H i � H j − δ − (1 − λ ) H i � � � � � � Q i , j = F ˆ � n , γ 1 − F ˆ � n , γ 1 γ 2 γ 2 � � λ λ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  57. ARL “local” optimization (Markov chain) The transition probability matrix  · · ·  Q 0 , 0 Q 0 , 1 Q 0 , p r 0 Q 1 , 0 Q 1 , 1 · · · Q 1 , p r 1   Q r    . . . .   = . . . . P =   . . . .    0 T 1   · · · Q p , 0 Q p , 1 Q p , p r p   0 0 · · · 0 1 Transient probabilities � µ 0 (ˆ γ 2 ) − (1 − λ + ) H i � � Q + � = F ˆ � n , γ 1 γ 2 i , 0 � λ + � µ 0 (ˆ γ 2 ) − (1 − λ − ) H i � � � = 1 − F ˆ Q − � n , γ 1 γ 2 � i , 0 λ − � H j + δ − (1 − λ ) H i � H j − δ − (1 − λ ) H i � � � � � � Q i , j = F ˆ � n , γ 1 − F ˆ � n , γ 1 γ 2 γ 2 � � λ λ Vector of initial probabilities q = (1 , 0 , . . . , 0) T . Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  58. ARL “local” optimization (Markov chain) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  59. ARL “local” optimization (Markov chain) Definition The number of steps L until the process reaches the absorbing state is a Discrete PHase-type (or DPH) random variable of parameters ( Q , q ). Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  60. ARL “local” optimization (Markov chain) Definition The number of steps L until the process reaches the absorbing state is a Discrete PHase-type (or DPH) random variable of parameters ( Q , q ). ARL , SRDL Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  61. ARL “local” optimization (Markov chain) Definition The number of steps L until the process reaches the absorbing state is a Discrete PHase-type (or DPH) random variable of parameters ( Q , q ). ARL , SRDL q T ( I − Q ) − 1 1 ν 1 ( L ) = Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  62. ARL “local” optimization (Markov chain) Definition The number of steps L until the process reaches the absorbing state is a Discrete PHase-type (or DPH) random variable of parameters ( Q , q ). ARL , SRDL q T ( I − Q ) − 1 1 ν 1 ( L ) = 2 q T ( I − Q ) − 2 Q1 ν 2 ( L ) = Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  63. ARL “local” optimization (Markov chain) Definition The number of steps L until the process reaches the absorbing state is a Discrete PHase-type (or DPH) random variable of parameters ( Q , q ). ARL , SRDL q T ( I − Q ) − 1 1 ν 1 ( L ) = 2 q T ( I − Q ) − 2 Q1 ν 2 ( L ) = and ARL = ν 1 ( L ) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  64. ARL “local” optimization (Markov chain) Definition The number of steps L until the process reaches the absorbing state is a Discrete PHase-type (or DPH) random variable of parameters ( Q , q ). ARL , SRDL q T ( I − Q ) − 1 1 ν 1 ( L ) = 2 q T ( I − Q ) − 2 Q1 ν 2 ( L ) = and ARL = ν 1 ( L ) � ν 2 ( L ) − ν 2 SDRL = 1 ( L ) + ν 1 ( L ) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  65. Optimal ( λ ∗ , K ∗ ) and ARL for EWMA- γ 2 and SH- γ charts n = 7, ARL 0 = 370 . 4 τ γ 0 = 0 . 05 γ 0 = 0 . 1 γ 0 = 0 . 15 γ 0 = 0 . 2 0 . 50 (0 . 5671 , 1 . 8734) (0 . 5637 , 1 . 8480) (0 . 5608 , 1 . 8043) (0 . 5539 , 1 . 7474) (3 . 4 , 18 . 4) (3 . 4 , 18 . 6) (3 . 5 , 18 . 9) (3 . 5 , 19 . 3) 0 . 65 (0 . 2951 , 2 . 1229) (0 . 2902 , 2 . 0932) (0 . 2854 , 2 . 0416) (0 . 2792 , 1 . 9709) (6 . 4 , 69 . 3) (6 . 4 , 69 . 9) (6 . 4 , 70 . 8) (6 . 5 , 72 . 1) 0 . 80 (0 . 1104 , 2 . 2582) (0 . 1088 , 2 . 2142) (0 . 1032 , 2 . 1413) (0 . 0976 , 2 . 0414) (15 . 3 , 212 . 1) (15 . 4 , 213 . 2) (15 . 5 , 215 . 0) (15 . 6 , 217 . 5) 1 . 25 (0 . 1092 , 3 . 0381) (0 . 1101 , 3 . 0831) (0 . 1097 , 3 . 1504) (0 . 1087 , 3 . 2443) (11 . 3 , 32 . 4) (11 . 4 , 32 . 9) (11 . 7 , 33 . 8) (12 . 0 , 35 . 1) 1 . 50 (0 . 2646 , 3 . 5219) (0 . 2603 , 3 . 5538) (0 . 2531 , 3 . 6078) (0 . 2443 , 3 . 6873) (4 . 3 , 7 . 2) (4 . 3 , 7 . 4) (4 . 4 , 7 . 6) (4 . 6 , 8 . 0) 2 . 00 (0 . 5852 , 3 . 9768) (0 . 5725 , 4 . 0146) (0 . 5520 , 4 . 0781) (0 . 5212 , 4 . 1644) (1 . 8 , 2 . 1) (1 . 8 , 2 . 1) (1 . 9 , 2 . 2) (2 . 0 , 2 . 3) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  66. ( λ ∗ , K ∗ ) nomograms γ 0 = 0 . 05 γ 0 = 0 . 05 1 4.5 0.9 4 0.8 K −∗ K + ∗ λ + ∗ λ −∗ 0.7 3.5 0.6 0.5 3 K λ 0.4 2.5 0.3 n=5 n=5 0.2 2 n=7 n=7 0.1 n=10 n=10 n=15 n=15 0 1.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.6 0.8 1 1.2 1.4 1.6 1.8 2 τ τ γ 0 = 0 . 1 γ 0 = 0 . 1 1 4.5 0.9 4 K + ∗ 0.8 K −∗ λ −∗ λ + ∗ 0.7 3.5 0.6 0.5 3 K λ 0.4 2.5 0.3 n=5 n=5 0.2 2 n=7 n=7 0.1 n=10 n=10 n=15 n=15 0 1.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.6 0.8 1 1.2 1.4 1.6 1.8 2 τ τ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  67. ( λ ∗ , K ∗ ) nomograms γ 0 = 0 . 15 γ 0 = 0 . 15 1 4.5 0.9 4 0.8 K −∗ K + ∗ λ + ∗ λ −∗ 0.7 3.5 0.6 0.5 3 K λ 0.4 2.5 0.3 n=5 n=5 0.2 2 n=7 n=7 0.1 n=10 n=10 n=15 n=15 0 1.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.6 0.8 1 1.2 1.4 1.6 1.8 2 τ τ γ 0 = 0 . 2 γ 0 = 0 . 2 1 4.5 0.9 4 K + ∗ 0.8 K −∗ λ −∗ λ + ∗ 0.7 3.5 0.6 0.5 3 K λ 0.4 2.5 0.3 n=5 n=5 0.2 2 n=7 n=7 0.1 n=10 n=10 n=15 n=15 0 1.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.6 0.8 1 1.2 1.4 1.6 1.8 2 τ τ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  68. EWMA- γ 2 chart v.s. EWMA- γ (Hong et al., 2008) chart n = 5 τ γ 0 = 0 . 05 γ 0 = 0 . 1 γ 0 = 0 . 15 γ 0 = 0 . 2 0 . 50 (4 . 8 , 4 . 7) (4 . 8 , 4 . 7) (4 . 8 , 4 . 8) (4 . 8 , 4 . 8) 0 . 65 (8 . 7 , 8 . 8) (8 . 8 , 8 . 9) (8 . 8 , 8 . 9) (8 . 8 , 9 . 0) 0 . 80 (20 . 6 , 21 . 1) (20 . 6 , 21 . 2) (20 . 7 , 21 . 3) (20 . 9 , 21 . 5) 0 . 90 (53 . 2 , 56 . 2) (53 . 7 , 56 . 4) (54 . 5 , 56 . 8) (55 . 8 , 57 . 3) 1 . 10 (51 . 0 , 51 . 5) (51 . 2 , 51 . 8) (51 . 7 , 52 . 3) (52 . 4 , 52 . 9) 1 . 25 (15 . 0 , 15 . 5) (15 . 2 , 15 . 6) (15 . 4 , 15 . 8) (15 . 9 , 16 . 0) 1 . 50 (5 . 7 , 5 . 9) (5 . 8 , 5 . 9) (5 . 9 , 6 . 0) (6 . 1 , 6 . 2) 2 . 00 (2 . 4 , 2 . 4) (2 . 4 , 2 . 4) (2 . 5 , 2 . 5) (2 . 6 , 2 . 6) n = 7 τ γ 0 = 0 . 05 γ 0 = 0 . 1 γ 0 = 0 . 15 γ 0 = 0 . 2 0 . 50 (3 . 4 , 3 . 4) (3 . 4 , 3 . 4) (3 . 5 , 3 . 4) (3 . 5 , 3 . 5) 0 . 65 (6 . 4 , 6 . 4) (6 . 4 , 6 . 4) (6 . 4 , 6 . 5) (6 . 5 , 6 . 5) 0 . 80 (15 . 3 , 15 . 6) (15 . 4 , 15 . 6) (15 . 5 , 15 . 8) (15 . 6 , 16 . 0) 0 . 90 (40 . 4 , 41 . 8) (40 . 7 , 42 . 0) (41 . 2 , 42 . 4) (42 . 0 , 42 . 9) 1 . 10 (39 . 2 , 39 . 7) (39 . 5 , 40 . 0) (40 . 1 , 40 . 4) (40 . 9 , 41 . 1) 1 . 25 (11 . 3 , 11 . 5) (11 . 4 , 11 . 6) (11 . 7 , 11 . 8) (12 . 0 , 12 . 1) 1 . 50 (4 . 3 , 4 . 3) (4 . 3 , 4 . 4) (4 . 4 , 4 . 5) (4 . 6 , 4 . 6) 2 . 00 (1 . 8 , 1 . 8) (1 . 8 , 1 . 8) (1 . 9 , 1 . 9) (2 . 0 , 2 . 0) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  69. ARL “global” optimization Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  70. ARL “global” optimization Drawback of “local” optimization Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  71. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  72. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. The shift size is not deterministic and varies accordingly to some unknown stochastic model. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  73. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. The shift size is not deterministic and varies accordingly to some unknown stochastic model. New objective function and constraint Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  74. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. The shift size is not deterministic and varies accordingly to some unknown stochastic model. New objective function and constraint Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin EARL ( γ 0 , τγ 0 , λ, K , n ) ( λ, K ) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  75. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. The shift size is not deterministic and varies accordingly to some unknown stochastic model. New objective function and constraint Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin EARL ( γ 0 , τγ 0 , λ, K , n ) ( λ, K ) with � EARL = f τ ( τ ) ARL ( γ 0 , τγ 0 , λ, K , n ) d τ. Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  76. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. The shift size is not deterministic and varies accordingly to some unknown stochastic model. New objective function and constraint Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin EARL ( γ 0 , τγ 0 , λ, K , n ) ( λ, K ) with � EARL = f τ ( τ ) ARL ( γ 0 , τγ 0 , λ, K , n ) d τ. subject to the constraint EARL ( γ 0 , γ 0 , λ, K , n ) = ARL ( γ 0 , γ 0 , λ, K , n ) = ARL 0 , Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  77. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. The shift size is not deterministic and varies accordingly to some unknown stochastic model. New objective function and constraint Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin EARL ( γ 0 , τγ 0 , λ, K , n ) ( λ, K ) with � EARL = f τ ( τ ) ARL ( γ 0 , τγ 0 , λ, K , n ) d τ. subject to the constraint EARL ( γ 0 , γ 0 , λ, K , n ) = ARL ( γ 0 , γ 0 , λ, K , n ) = ARL 0 , f τ ( τ ) is the p.d.f. of the shift τ Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

  78. ARL “global” optimization Drawback of “local” optimization Usually the quality practitioner does not know in advance the entity of the next shift size because of the lack of related historical data. The shift size is not deterministic and varies accordingly to some unknown stochastic model. New objective function and constraint Find out the optimal couples ( λ ∗ , K ∗ ) such that : ( λ ∗ , K ∗ ) = argmin EARL ( γ 0 , τγ 0 , λ, K , n ) ( λ, K ) with � EARL = f τ ( τ ) ARL ( γ 0 , τγ 0 , λ, K , n ) d τ. subject to the constraint EARL ( γ 0 , γ 0 , λ, K , n ) = ARL ( γ 0 , γ 0 , λ, K , n ) = ARL 0 , f τ ( τ ) is the p.d.f. of the shift τ → uniform distribution over [0 . 5 , 1) (decreasing case) Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

Recommend


More recommend