modeling the universe
play

Modeling the Universe Interfacing Theory, Simulations, Statistical - PowerPoint PPT Presentation

Modeling the Universe Interfacing Theory, Simulations, Statistical Methods, and Observations Tim Eifler (JPL/Caltech, University of Arizona) The Challenge reduced data summary and catalogs statistics 11 The Challenge reduced data and


  1. Modeling the Universe Interfacing Theory, Simulations, Statistical Methods, and Observations Tim Eifler (JPL/Caltech, University of Arizona)

  2. The Challenge reduced data summary and catalogs statistics 11

  3. The Challenge reduced data and catalogs 11

  4. Introducing CosmoLike Idea: consistent, multi-probe likelihood analysis software framework including • Realistic statistical error bars (cross-probe covariances) • Cross-correlations of observables/systematics • Efficient treatment of nuisance parameters Numerical Weak Lensing, Galaxy Systematics Simulations/ Clustering, Clusters, CMB, (photo-z, shape Emulators CMB-LSS correlations uncertainties) Explore fundamental Astrophysics physics (cosmic (Intrinsic alignment, acceleration, neutrinos, Baryonic Physics) Likelihood free tests of gravity) inference Gaussianization of Galaxy bias models Multi-Probe summary statistics (linear, quadratic, Covariances/Hybrid HOD) Estimators

  5. Project 1: Simulate a Multi-Probe Likelihood Analysis for LSST Theory+Sims+Stats -> Obs cosmolike - cosmological likelihood analyses for photometric galaxy surveys CosmoLike release paper (www.cosmolike.info) Krause & TE 2017

  6. Example Data Vector and Systematics Weak Lensing (cosmic shear) shear calibration, 10 tomography bins photo-z (sources) 25 l bins, 25 < l < 5000 IA, baryons Galaxy clustering b 1 , b 2,… 4 redshift bins (0.2-0.4,0.4-0.6,0.6-0.8,0.8-1.0) photo-z (lenses) compare two samples: σ z <0.04, redMaGiC linear + quadratic bias only : l bins restricted to R> 10 Mpc/h HOD modeling going to R>0.1 MPC/h Galaxy-galaxy lensing galaxies from clustering (as lenses) with shear sources N-M relation Clusters - number counts + shear profile c-M relation so far, 8 richness, 4 z-bins (same as clustering) off-centering tomographic cluster lensing (500 < l < 10000)

  7. CosmoLike - “Inner Workings” Krause & Eifler 2017 cosmological parameters collapse density clusters.c cosmo3d.c 𝜀 c (z) peak height 𝜉 (M,z) growth factor scaling relation transfer function halo properties D(k,z) M obs (M) T(k,z) c(M,z) b(M,z) n(M,z) P lin (k,z) cluster HOD, bias model selection fuction halo.c Coyote U. Cov(z i ,z j ,z k ,z l ,l 1, l 2 ) Emulator P nl (k,z) distances non-linear regime baryons cluster finding galaxy formation P(k,z j ) non-Gaussian intrinsic alignments photo-zs shear calibration ... .... .... systematics.c z-distr. n(z) N(M obs; z i ) o n p r o j e c t i photo-z n s f u n c t i o model b e r L i m r o x . C XY (l;z i ,z j ) a p p redshift.c Likelihood cosmo2d.c

  8. Multi-Probes Forecasts: Covariance Cluster Lensing Clusters Galaxy Clustering Galaxy- Galaxy Lensing Cosmic Shear 7+ million elements details: Krause&TE ‘17

  9. The Power of Combining Probes Prob 7 cosmological parameters σ 8 49 nuisance parameters Shear Calibration, • Lens+Source photo-z, • h Linear galaxy bias • Cluster Mass • Calibration w 0 • Intrinsic Alignments w a clustering cosmic shear clusterN 3x2pt 3x2pt+clusterN+clusterWL w 0 w a Ω m σ 8 h

  10. Zoom into w0-wa plane clustering • Very non-linear gain in cosmic shear clusterN constraining power 3x2pt 3x2pt+clusterN+clusterWL • Most stringent requirements on w a numerical simulations, photo-z, shear calibration, etc flow from Multi-Probe statistical limits w 0

  11. Project 2: Exploring WFIRST survey strategies Theory+Sims+Stats -> Obs Project within the WFIRST Cosmology with the High Latitude Survey Science Investigation Team TE et al in prep

  12. Individual vs multi- probe WFIRST analysis Modified Gravity All-In Systematics 76 dimensions (7 cosmology, 69 systematics)

  13. WFIRST - LSST synergies Possible WFIRST extension of 1.6 years overlapping with LSST

  14. Project 3: New statistical methods to reduce Super-Computing needs Theory+Stats -> Sims Precision matrix expansion - efficient use of numerical simulations in estimating errors on cosmological parameters Friedrich & TE 2018

  15. The Problem: Inverse Covariance Estimation Analytical covariance model relies on approximations that might be too imprecise for an LSST Y10 data set Estimation the covariance from numerical simulations (brute force), requires 10^5-10^6 realizations of an LSST Year 10 like survey to shield against noise in the estimator Why? The estimated inverse covariance is not the inverse of the estimated covariance High-dimensionality of the data vector -> many elements in the covariance

  16. Idea: Estimate the inverse directly i! � 1 ⌘ T C � 1 ⇣ ˆ 2 χ 2 h π | ˆ π | ˆ χ 2 h i ⇣ ˆ ⌘ π | ˆ p ( π π ξ ξ ) ⇠ exp π ξ ξ , C p ( π π π ) ξ π ξ ξ , C π π ξ ξ ξ ξ ξ � ξ ξ [ π ξ π π ] ξ ξ ξ � ξ ξ ξ [ π π π ] = Standard Estimator Ψ = ν � N d � 1 C � 1 ˆ ˆ New idea: Include theory ν information into estimator X : = ( B − B m ) M − 1 where M = A + B m is C = M + ( B − B m ) C = A + B C = ( 1 + X ) M , Invert and expand as ˆ M � 1 + M � 1 B m M � 1 B m M � 1 Ψ 2nd = power series � M � 1 ⇣ ˆ ⌘ M � 1 B � B m Build 0 1 � M � 1 ˆ ∞ BM � 1 B m M � 1 Estimator X B C M − 1 ( − 1) k X k B C Ψ B C = B C � M � 1 B m M � 1 ˆ B C BM � 1 B C @ A k = 0 + M � 1 ν 2 ˆ BM � 1 ˆ M � 1 ˆ ⇣ ⌘ B � ν ˆ B tr B M − 1 ⇣ h X 3 i⌘ 1 − X + X 2 + O = M � 1 ν 2 + ν � 2 Only matrix multiplication, no inversion of estimated quantities

  17. Idea: Estimate the inverse directly ⌘ T C � 1 ⇣ ˆ i! � 1 χ 2 h i ⇣ ˆ ⌘ π | ˆ 2 χ 2 h π | ˆ π | ˆ ξ , C π π ξ ξ ξ ξ ξ � ξ ξ [ π ξ π π ] ξ ξ ξ � ξ ξ ξ [ π π π ] p ( π π ξ ) ⇠ exp ξ π ξ ξ , C p ( π π π ) ξ π ξ = Standard Estimator Ψ = ν � N d � 1 C � 1 ˆ ˆ New idea: Include theory ν information into estimator X : = ( B − B m ) M − 1 where M = A + B m is C = M + ( B − B m ) C = A + B C = ( 1 + X ) M , Invert and expand as ˆ M � 1 + M � 1 B m M � 1 B m M � 1 Ψ 2nd = power series � M � 1 ⇣ ˆ ⌘ M � 1 B � B m Build 0 1 � M � 1 ˆ ∞ BM � 1 B m M � 1 Estimator X B C M − 1 ( − 1) k X k B C Ψ B C = B C � M � 1 B m M � 1 ˆ B C BM � 1 B C @ A k = 0 + M � 1 ν 2 ˆ BM � 1 ˆ M � 1 ˆ ⇣ ⌘ B � ν ˆ B tr B M − 1 ⇣ h X 3 i⌘ 1 − X + X 2 + O = M � 1 ν 2 + ν � 2 Only matrix multiplication, no inversion of estimated quantities

  18. Standard estimator Ψ = ν � N d � 1 C � 1 ˆ ˆ ν N s C : = 1 � T � � � � ξ i − ¯ ˆ ξ i − ¯ ˆ ˆ ξ ξ ν i = 1 Inverting quantities with “hats” is dangerous

  19. Idea: Estimate the inverse directly i! � 1 ⌘ T C � 1 ⇣ ˆ 2 χ 2 h π | ˆ π | ˆ χ 2 h i ⇣ ˆ ⌘ π | ˆ p ( π π ξ ) ⇠ exp ξ π ξ ξ , C p ( π π π ) ξ π ξ ξ , C π π ξ ξ ξ ξ � ξ ξ ξ [ π ξ π π ] ξ ξ ξ � ξ ξ ξ [ π π π ] = Standard Estimator Ψ = ν � N d � 1 C � 1 ˆ ˆ New idea: Include theory ν information into estimator X : = ( B − B m ) M − 1 where M = A + B m is C = M + ( B − B m ) C = A + B C = ( 1 + X ) M , Invert and expand as ˆ M � 1 + M � 1 B m M � 1 B m M � 1 Ψ 2nd = power series � M � 1 ⇣ ˆ ⌘ M � 1 B � B m Build 0 1 � M � 1 ˆ ∞ BM � 1 B m M � 1 Estimator X B C M − 1 ( − 1) k X k B C Ψ B C = B C � M � 1 B m M � 1 ˆ B C BM � 1 B C @ A k = 0 + M � 1 ν 2 ˆ BM � 1 ˆ M � 1 ˆ ⇣ ⌘ B � ν ˆ B tr B M − 1 ⇣ h X 3 i⌘ 1 − X + X 2 + O = M � 1 ν 2 + ν � 2 Only matrix multiplication, no inversion of estimated quantities

  20. Idea: Estimate the inverse directly i! � 1 ⌘ T C � 1 ⇣ ˆ 2 χ 2 h π | ˆ π | ˆ χ 2 h i ⇣ ˆ ⌘ π | ˆ p ( π π ξ ξ ) ⇠ exp π ξ ξ , C p ( π π ) π ξ π ξ ξ , C π π ξ ξ ξ ξ � ξ ξ ξ [ π ξ π π ] ξ ξ ξ � ξ ξ ξ [ π π π ] = Standard Estimator Ψ = ν � N d � 1 C � 1 ˆ ˆ New idea: Include theory ν information into estimator X : = ( B − B m ) M − 1 where M = A + B m is C = M + ( B − B m ) C = A + B C = ( 1 + X ) M , Invert and expand as ˆ M � 1 + M � 1 B m M � 1 B m M � 1 Ψ 2nd = power series � M � 1 ⇣ ˆ ⌘ M � 1 B � B m Build 0 1 � M � 1 ˆ ∞ BM � 1 B m M � 1 Estimator X B C M − 1 ( − 1) k X k B C Ψ B C = B C � M � 1 B m M � 1 ˆ B C BM � 1 B C @ A k = 0 + M � 1 ν 2 ˆ BM � 1 ˆ M � 1 ˆ ⇣ ⌘ B � ν ˆ B tr B M − 1 ⇣ h X 3 i⌘ 1 − X + X 2 + O = M � 1 ν 2 + ν � 2 Only matrix multiplication, no inversion of estimated quantities

  21. New estimator M � 1 + M � 1 B m M � 1 B m M � 1 ˆ Ψ 2nd = � M � 1 ⇣ ˆ ⌘ M � 1 B � B m � M � 1 ˆ BM � 1 B m M � 1 � M � 1 B m M � 1 ˆ BM � 1 + M � 1 ν 2 ˆ BM � 1 ˆ M � 1 ˆ ⇣ ⌘ B � ν ˆ B tr B M � 1 ν 2 + ν � 2 No more inversion of “hat quantities”…

  22. New estimator performance Instead of >10^5 our new estimator only requires ~2000 numerical simulations (LSST case) Given that 1 sim is 1M CPUh, at 1c/CPUh New method reduces cost $1B to $20M (-> fund theorists!) Next step: data compression

Recommend


More recommend