mod elisation math ematique des vagues
play

Mod elisation math ematique des vagues David Lannes Institut de - PowerPoint PPT Presentation

Mod elisation math ematique des vagues David Lannes Institut de Math ematiques de Bordeaux et CNRS UMR 5251 Journ ee des doctorants David Lannes (IMB) Mod elisation math ematique des vagues Valenciennes, 10/09/2015 1 / 30


  1. Mod´ elisation math´ ematique des vagues David Lannes Institut de Math´ ematiques de Bordeaux et CNRS UMR 5251 Journ´ ee des doctorants David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 1 / 30

  2. Goal David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 2 / 30

  3. Goal David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 2 / 30

  4. Goal David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 2 / 30

  5. Where do waves come from? How are they created? Source: Les vagues en ´ equations, Pour la Science, no 409, novembre 2011 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 3 / 30

  6. Where do waves come from? What is their speed? Sir Isaac Newton (1642-1727) Principia Mathematica , 1687 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 4 / 30

  7. Where do waves come from? What is their speed? David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 4 / 30

  8. Where do waves come from? What is their speed? Leonhard Euler (1707-1783) M´ emoires de l’Acad´ emie royale des sciences et des belles lettres de Berlin , 1757 � Equations of fluid mechanics ρ ( ∂ t U + U · ∇ X , z U ) = − ∇ X , z P + ρ g div U =0 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 5 / 30

  9. Where do waves come from? What is their speed? Leonhard Euler (1707-1783) M´ emoires de l’Acad´ emie royale des sciences et des belles lettres de Berlin , 1757 � Equations of fluid mechanics ρ ( ∂ t U + U · ∇ X , z U ) = − ∇ X , z P + ρ g div U =0 This equations are very general What do they tell us about waves? David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 5 / 30

  10. Where do waves come from? What is their speed? Giuseppe Lodovico Lagrangia (Joseph Louis Lagrange) (1736-1813) M´ emoire sur la th´ eorie du mouvement des fluides , 1781 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 6 / 30

  11. Where do waves come from? What is their speed? David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 6 / 30

  12. Where do waves come from? What is their speed? Source: Les vagues en ´ equations, Pour la Science, no 409, novembre 2011 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 7 / 30

  13. Where do waves come from? What is their speed? Comparison of Newton and Lagrange’s formulas Lagrange: c = √ gH . � All waves have same speed David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 8 / 30

  14. Where do waves come from? What is their speed? Comparison of Newton and Lagrange’s formulas Lagrange: c = √ gH . � All waves have same speed √ gL where L is the wave length of the wave 1 Newton: c = √ 2 π � Waves of different wavelength propagate differently David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 8 / 30

  15. Where do waves come from? What is their speed? Comparison of Newton and Lagrange’s formulas Lagrange: c = √ gH . � All waves have same speed √ gL where L is the wave length of the wave 1 Newton: c = √ 2 π � Waves of different wavelength propagate differently This is dispersion: Source: Les vagues en ´ equations, Pour la Science, no 409, novembre 2011 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 8 / 30

  16. Where do waves come from? What is their speed? Comparison of Newton and Lagrange’s formulas Lagrange: c = √ gH . � All waves have same speed √ gL where L is the wave length of the wave 1 Newton: c = √ 2 π � Waves of different wavelength propagate differently Comparison for a wave a 0 ( x ) = sin( x ) + 0 . 5 sin(2 x ). Source: Les vagues en ´ equations, Pour la Science, no 409, novembre 2011 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 8 / 30

  17. Where do waves come from? What is their speed? Recall how waves are created Source: Les vagues en ´ equations, Pour la Science, no 409, novembre 2011 So the good formula should be David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 9 / 30

  18. Where do waves come from? What is their speed? Recall how waves are created Source: Les vagues en ´ equations, Pour la Science, no 409, novembre 2011 So the good formula should be √ gL 1 Newton: c = √ 2 π David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 9 / 30

  19. Closer to the shore Another formula! Closer to the shore we observe: And the relevant formula is David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 10 / 30

  20. Closer to the shore Another formula! Closer to the shore we observe: And the relevant formula is Lagrange: c = √ gH David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 10 / 30

  21. Closer to the shore What happens? Sim´ eon Denis Augustin Louis Sir George Biddell Sir George Gabriel Poisson Cauchy Airy Stokes (1789–1857) (1801–1892) (1819–1903) (1780–1840) David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 11 / 30

  22. Closer to the shore What happens? Sim´ eon Denis Augustin Louis Sir George Biddell Sir George Gabriel Poisson Cauchy Airy Stokes (1789–1857) (1801–1892) (1819–1903) (1780–1840) � A single formula with two different asymptotic regimes Lagrange’s formula in shallow water ( H / L → 0), Newton’s formula in deep water ( H / L → ∞ ). David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 11 / 30

  23. Modern mathematical approaches Notations David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 12 / 30

  24. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

  25. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t 2 div U = 0 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

  26. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t 2 div U = 0 3 curl U = 0 David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

  27. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t 2 div U = 0 3 curl U = 0 4 Ω t = { ( X , z ) ∈ R d +1 , − H 0 + b ( X ) < z < ζ ( t , X ) } . David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

  28. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t 2 div U = 0 3 curl U = 0 4 Ω t = { ( X , z ) ∈ R d +1 , − H 0 + b ( X ) < z < ζ ( t , X ) } . 5 U · n = 0 on { z = − H 0 + b ( X ) } . David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

  29. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t 2 div U = 0 3 curl U = 0 4 Ω t = { ( X , z ) ∈ R d +1 , − H 0 + b ( X ) < z < ζ ( t , X ) } . 5 U · n = 0 on { z = − H 0 + b ( X ) } . � 6 ∂ t ζ − 1 + |∇ ζ | 2 U · n = 0 on { z = ζ ( t , X ) } . David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

  30. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t 2 div U = 0 3 curl U = 0 4 Ω t = { ( X , z ) ∈ R d +1 , − H 0 + b ( X ) < z < ζ ( t , X ) } . 5 U · n = 0 on { z = − H 0 + b ( X ) } . � 6 ∂ t ζ − 1 + |∇ ζ | 2 U · n = 0 on { z = ζ ( t , X ) } . 7 P = P atm on { z = ζ ( t , X ) } . David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

  31. Modern mathematical approaches The free surface Euler equations The free surface Euler equations 1 ∂ t U + ( U · ∇ X , z ) U = − 1 ρ ∇ X , z P − g e z in Ω t 2 div U = 0 3 curl U = 0 4 Ω t = { ( X , z ) ∈ R d +1 , − H 0 + b ( X ) < z < ζ ( t , X ) } . 5 U · n = 0 on { z = − H 0 + b ( X ) } . � 6 ∂ t ζ − 1 + |∇ ζ | 2 U · n = 0 on { z = ζ ( t , X ) } . 7 P = P atm on { z = ζ ( t , X ) } . Definition Equations (H1)-(H9) are called free surface Euler equations. David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 13 / 30

Recommend


More recommend