mm ys conventional multiuser mimo precoding
play

MM YS Conventional Multiuser MIMO Precoding 1/19 Erik G. Larsson - PowerPoint PPT Presentation

Waveform Design for the Massive MIMO Downlink Erik G. Larsson May 27, 2014 Div. of Communication Systems Dept. of Electrical Engineering (ISY) Link oping University Link oping, Sweden www.commsys.isy.liu.se MM YS Conventional


  1. Waveform Design for the Massive MIMO Downlink Erik G. Larsson May 27, 2014 Div. of Communication Systems Dept. of Electrical Engineering (ISY) Link¨ oping University Link¨ oping, Sweden www.commsys.isy.liu.se MM YS

  2. Conventional Multiuser MIMO Precoding 1/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  3. A Unique Feature of the Massive MIMO Downlink ◮ M − K unused degrees of freedom ◮ Channel nullspace: dim ( null ( H T )) = M − K ! ◮ Exploit nullspace for hardware-friendly waveform shaping: y = H T x + w = H T ( x + z ) + w if z ∈ null ( H T ) ◮ Per-antenna constant envelope or low-PAR multiuser precoding 2/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  4. “Discrete-Time Constant Envelope” (DTCE) Precoding ℋ mf y 1 [ n ] psf P A User 1 { u 1 [ n ]} psf P A Precoder mf y k [ n ] { u k [ n ]} User k { u K [ n ]} psf mf y K [ n ] P A Channel ℋ User K ⇒ Not phase modulation! Not equal gain combining! ⇒ Not constant modulus beamforming! ⇒ Requires extra emitted power but allows for reduced PA backoff. Worth it? 3/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  5. Discrete-Time Constant-Envelope (DTCE) Precoding Algorithm � M L − 1 P � � h k,m [ l ] e jθ m [ n − l ] + w k [ n ] ◮ Channel model: y k [ n ] = M m =1 l =0 �� M � � L − 1 √ √ l =0 h k,m [ l ] e jθ m [ n − l ] √ √ m =1 = P E k u k [ n ] + P √ − E k u k [ n ] + w k [ n ] M � �� � “interference” J k [ n ] ◮ Find { θ m [ n ] } via: N K � � | J k [ n ] | 2 . min { θ m [ n ] } n =1 k =1 ◮ Capacity lower bound, for u k [ n ] Gaussian with unit energy     � � PE k PE k     R k = E  log 2  � log 2  � �  1 /N PJ k + 1 � � � P · E [ J k J H k | H ] + I � ◮ For fixed P , select { E k } that maximize � k R k 4/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  6. Extra Power Cost of DTCE at R = 2 bpcu/terminal, M = 80 , K = 10 0 L = 1, DTCE L = 4, DTCE 1 Required power [dB] L = 1, 4, Coop. lower bound 2 3 4 5 0 20 40 60 Window length 5/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  7. DTCE in Discrete vs. Continuous Time, RRC with β = 0 . 3 0.15 0.15 PAR: 3.95 dB 0.1 0.1 Quadrature Amplitude Quadrature Amplitude 0.05 0.05 0 0 − 0.05 − 0.05 − 0.1 − 0.1 − 0.1 − 0.05 0 0.05 0.1 0.15 − 0.1 − 0.05 0 0.05 0.1 0.15 Inphase Amplitude Inphase Amplitude (a) Discrete time (b) Cont. time 6/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  8. Peak-to-Average Ratios, RRC with β = 0 . 3 SC TR-MRP 4-QAM OFDM MRP 7/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  9. Amplitude Transfer Characteristics 8/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  10. Amplifier Distortion ◮ Transfer function (complex baseband) y ( t ) = g ( | x ( t ) | ) e j arg x ( t )+ j Φ( | x ( t ) | ) . x ( t ) �→ ◮ Example: Rapp Model (class B) | x | /x max g ( | x | ) = α · (1 + ( | x | /x max ) 2 p ) 1 / (2 p ) Φ( | x | ) = 0 ◮ In-band distortion: with y =desired, ˜ y =actually received complex sample, y | 2 ] NMSE = E [ | y − λ ˜ λ ˜ y = LMMSE est. of y , E [ | y | 2 ] Empirical observation: the error ( y − λ ˜ y ) is independent of y ⇒ in-band distortion effectively yields an extra noise term ◮ Out-of-band distortion: Measured in terms of � f 0 + B/ 2 max f 0 , | f 0 | >B f 0 − B/ 2 S x ( f ) d f ACLR = � B/ 2 − B/ 2 S x ( f ) d f 9/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  11. In-Band Distortion, Example, M = 100 2 1.5 Quadrature Amplitude 1 0.5 0 − 0.5 − 1 − 1.5 − 2 − 2 − 1.5 − 1 − 0.5 0 0.5 1 1.5 2 Inphase Amplitude 10/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  12. Out-of-Band Distortion, Example 10 0 PA operation at 10 1dB compression 20 MRP PSD [dB] 30 40 DTCE 50 10 dB back-off 60 70 0 0.5 1 1.5 2 Normalized Frequency, symbol rate = 1 11/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  13. Amplifier Power Efficiency ◮ For class B PA: E [ | x ( t ) | 2 ] η = π | y max | · E [ | x ( t ) | ] ∼ P out 1 η ≤ π 4 · √ P in = √ 4 ≈ 78% , b ◮ Increased back-off ( b ) ⇒ reduced η ◮ Max efficiency requires constant-envelope in continuous time (CPM) 12/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  14. Basic Tradeoff Radiated power to achieve rate R DTCE Δ P MRP ZF R-ZF 4 dB 10 dB PAR (cont. time) � � 1 + M P ⇒ For MRP: R k � max η log 2 , P = η · P cons. K P + D k +1 � � 1 + M − K P ⇒ For ZF: R k � max η log 2 , P = η · P cons. K D k +1 � � P ⇒ For R-ZF: R k � max η log 2 1 + G · , P = η · P cons. P J k + D k +1 � � P E k ⇒ For DTCE: R k � max E k ,η log 2 , P = η · P cons. P J k + D k +1 13/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  15. In-Band Distortion versus Efficiency MRP and ZF 14/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  16. Out-Band Distortion versus Efficiency 10 20 30 1.8 dB 2.2 dB ACLR [dB] 40 LTE 5.2 dB 50 10 dB 60 70 14 dB MRP and ZF DTCE 80 20 dB 90 0 10 20 30 40 50 60 70 80 Efficiency η [%] 15/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  17. Amplifier Power Consumption—at the Optimal Operating Point 0 10 20 30 40 50 60 70 80 90 16/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  18. Amplifier Power Consumption—at the Optimal Operating Point 0 50 100 150 200 17/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  19. Conclusions and Future Work ◮ Low-PAR precoding is ◮ not likely to yield substantial net power savings, but ◮ may greatly simplify the RF design ◮ Massive MIMO vision: High-End Performance with Low-End Devices ◮ Base stations built from handset technology! ◮ Class-B, or similar, amplifiers—operating at (near) saturation ◮ Using new low-PAR or CE waveforms ◮ Per-antenna output power on the order of 20-50 mW ◮ Ongoing work/unresolved issues ◮ Tightness of capacity bounds ◮ Per-antenna continuous-time constant envelope (CPM-like) modulation ◮ Imperfect CSI@TX 18/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  20. This talk was based on joint work with my colleagues ◦ Christopher Moll´ en (LiU, Sweden) ◦ Thomas Eriksson (Chalmers, Sweden) ◦ Saif K. Mohammed (IIT, Dehli) Thank You 19/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  21. Backup Slides 20/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

  22. Complexity of ZF and DTCE For a block of N symbols ◮ Zero-forcing requires ∼ O ( NK 2 M ) operations: ◮ N pseudo inverses, each ∼ O ( K 2 M ) , ◮ N matrix-vector multiplications, each ∼ O ( KM ) and ◮ (1 + K ) M Fourier transforms (each transmit signal and each channel impulse response). ◮ Discrete-time constant-envelope precoding requires ∼ O ( NKML ) operations. ◮ summation of KL complex terms in each iteration ◮ κNM iterations needed, where κ ≈ 5 21/19 Erik G. Larsson Communication Systems Waveform Design for the Massive MIMO Downlink Link¨ oping University

Recommend


More recommend