mixhop higher order graph convolutional architectures via
play

MixHop: Higher-Order Graph Convolutional Architectures via - PowerPoint PPT Presentation

1 2 MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing Sami Abu-El-Haija 1 , Bryan Perozzi 2 , Amol Kapoor 2 , Nazanin Alipourfard 1 , Kristina Lerman 1 , Hrayr Harutyunyan 1 , Greg Ver Steeg 1 , Aram


  1. 1 2 MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing Sami Abu-El-Haija 1 , Bryan Perozzi 2 , Amol Kapoor 2 , Nazanin Alipourfard 1 , Kristina Lerman 1 , Hrayr Harutyunyan 1 , Greg Ver Steeg 1 , Aram Galstyan 1 Code: http://github.com/samihaija/mixhop Slides: http://sami.haija.org/icml19 Abu-El-Haija et al, MixHop, ICML’19 Poster #88 Poster #88

  2. Agenda ● Review Graph Convolutional Networks (GCN) ○ Application Semi-Supervised Node Classification (SSNC) ○ Shortcoming of GCN ● MixHop: Higher-Order GCN ○ Sparsification ● MixHop Results on SSNC Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  3. Agenda ● Review Graph Convolutional Networks (GCN) ○ Application Semi-Supervised Node Classification (SSNC) ○ Shortcoming of GCN ● MixHop: Higher-Order GCN ○ Sparsification ● MixHop Results on SSNC Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  4. Graph Convolutional Network (GCN) [1] [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  5. Graph Convolutional Network (GCN) [1] x 4 x 5 x 2 x 3 x 6 x 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  6. Graph Convolutional Network (GCN) [1] x 4 x 5 x 2 x 3 x 6 x 1 Input Features [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  7. Graph Convolutional Network (GCN) [1] x 4 x 5 x 2 x 3 x 6 GC Layer 1 x 1 Input Features [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  8. Graph Convolutional Network (GCN) [1] (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 (1) h 2 GC Layer 1 x 1 (1) h 1 Input Features Latent Features [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  9. Graph Convolutional Network (GCN) [1] (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 … (1) h 2 GC Layer 1 x 1 (1) h 1 Input Features Latent Features [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  10. Graph Convolutional Network (GCN) [1] (1) (L) h 4 h 4 x 4 x 5 (1) (L) h 5 h 5 x 2 x 3 (1) (L) h 3 h 3 x 6 (1) (L) h 6 h 6 … (1) (L) h 2 h 2 GC Layer 1 GC Layer L x 1 (1) (L) h 1 h 1 Input Features Latent Features Output Features [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  11. Graph Convolutional Network (GCN) [1] Train on semi-supervised node classification: (L) h 4 y 4 (L) h 5 ● measure Loss on labeled nodes ( y 4 , y 2 ) (L) h 3 (L) h 6 (L) h 2 y 2 (L) h 1 Output Features [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  12. Graph Convolutional Network (GCN) [1] Train on semi-supervised node classification: Loss (L) h 4 y 4 (L) h 5 ● measure Loss on labeled nodes ( y 4 , y 2 ) (L) h 3 ● Backprop to learn GC layers. (L) h 6 Loss (L) h 2 y 2 (L) h 1 Output Features [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  13. Graph Convolutional Network (GCN) [1] Loss (1) (L) h 4 h 4 x 4 y 4 x 5 (1) (L) h 5 h 5 x 2 x 3 (1) (L) h 3 h 3 x 6 (1) (L) h 6 h 6 … Loss (1) (L) h 2 h 2 y 2 GC Layer 1 GC Layer L x 1 (1) (L) h 1 h 1 update update Input Features Latent Features Output Features SGD [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  14. Graph Convolutional Network (GCN) [1] (1) (L) h 4 h 4 x 4 y 4 x 5 (1) (L) h 5 h 5 x 2 x 3 (1) (L) h 3 h 3 x 6 (1) (L) h 6 h 6 … (1) (L) h 2 h 2 y 2 GC Layer 1 GC Layer L x 1 (1) (L) h 1 h 1 ? [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  15. Graph Convolutional Network (GCN) [1] (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 (1) h 2 GC Layer 1 x 1 (1) h 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  16. Graph Convolutional Network (GCN) [1] (1) h 4 x 4 x 5 (1) h 5 x 3 x 2 (1) h 3 x 6 (1) h 6 Avg fc (1) h 2 GC Layer 1 x 1 (1) h 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  17. Graph Convolutional Network (GCN) [1] Tensor Graph (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 Avg fc (1) h 2 GC Layer 1 x 1 (1) h 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  18. Graph Convolutional Network (GCN) [1] Tensor Graph (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 Avg fc (1) h 2 GC Layer 1 x 1 (1) h 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  19. Graph Convolutional Network (GCN) [1] Tensor Graph (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 Avg fc (1) h 2 GC Layer 1 x 1 (1) h 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  20. Graph Convolutional Network (GCN) [1] Tensor Graph (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 Avg fc (1) h 2 GC Layer 1 x 1 (1) h 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  21. Graph Convolutional Network (GCN) [1] Tensor Graph (1) h 4 x 4 x 5 (1) h 5 x 2 x 3 (1) h 3 x 6 (1) h 6 Avg fc (1) h 2 GC Layer 1 x 1 (1) h 1 [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  22. Shortcoming of Vanilla GCN Vanilla GC Layer [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  23. Shortcoming of Vanilla GCN Vanilla GC Layer 😁 fc is shared ⇒ inductive [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  24. Shortcoming of Vanilla GCN Vanilla GC Layer 😁 fc is shared ⇒ inductive 😣 Appendix Experiments of [1] shows no gains beyond 2 layers [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  25. Shortcoming of Vanilla GCN Vanilla GC Layer 😁 fc is shared ⇒ inductive 😣 Appendix Experiments of [1] shows no gains beyond 2 layers 😣 cannot mix neighbors from various distances in arbitrary linear combinations [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  26. Shortcoming of Vanilla GCN Vanilla GC Layer 😁 fc is shared ⇒ inductive 😣 Appendix Experiments of [1] shows no gains beyond 2 layers 😣 cannot mix neighbors from various distances in arbitrary linear combinations e.g. cannot learn Gabor Filters ! [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  27. Shortcoming of Vanilla GCN Vanilla GC Layer 😁 fc is shared ⇒ inductive 😣 Appendix Experiments of [1] shows no gains beyond 2 layers 😣 cannot mix neighbors from various distances in arbitrary linear combinations e.g. cannot learn Gabor Filters ! ? [1] Kipf & Welling, ICLR 2017 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  28. Detour: Review Gabor Filters Neuroscientists discover their importance in the primate visual cortex [2, 3]: [2] Daugman, Vision Research,1980 [3] Daugman, Journal of the Optical Society of America, 1985 [4] Honglak Lee et al, ICML, 2009 [5] Alex Krizhevsky et al, NeurIPS 2012 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  29. Detour: Review Gabor Filters Neuroscientists discover their importance in the primate visual cortex [2, 3]: Further, they are automatically recovered by training CNNs on images [4, 5] [2] Daugman, Vision Research,1980 [3] Daugman, Journal of the Optical Society of America, 1985 [4] Honglak Lee et al, ICML, 2009 [5] Alex Krizhevsky et al, NeurIPS 2012 Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  30. Main Motivation Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  31. Main Motivation Extend the class of representations realizable by GCNs e.g. to learn Gabor Filters Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  32. Agenda ● Review Graph Convolutional Networks (GCN) ○ Application Semi-Supervised Node Classification (SSNC) ○ Shortcoming of GCN ● MixHop: Higher-Order GCN ○ Sparsification ● MixHop Results on SSNC Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  33. Our Model: MixHop MixHop GC Layer Vanilla GC Layer Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  34. Our Model: MixHop MixHop GC Layer Vanilla GC Layer Couple of code lines implements concatenation Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  35. Our Model: MixHop MixHop GC Layer Vanilla GC Layer Couple of code lines implements concatenation Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  36. Our Model: MixHop MixHop GC Layer Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  37. Our Model: MixHop 😁 Inductive MixHop GC Layer Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  38. Our Model: MixHop 😁 Inductive MixHop GC Layer 😁 Can incorporate distant nodes Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  39. Our Model: MixHop 😁 Inductive MixHop GC Layer 😁 Can incorporate distant nodes 😁 Can mix neighbors across distances in arbitrary linear combinations Abu-El-Haija et al, MixHop, ICML’19 Poster #88

  40. Our Model: MixHop 😁 Inductive MixHop GC Layer 😁 Can incorporate distant nodes 😁 Can mix neighbors across distances in arbitrary linear combinations i.e. can learn Gabor Filters ! Abu-El-Haija et al, MixHop, ICML’19 Poster #88

Recommend


More recommend