mixed similarity learning for recommendation with
play

Mixed Similarity Learning for Recommendation with Implicit Feedback - PowerPoint PPT Presentation

Mixed Similarity Learning for Recommendation with Implicit Feedback Mengsi Liu, Weike Pan # , Miao Liu, Yaofeng Chen, Xiaogang Peng and Zhong Ming College of Computer Science and Software Engineering Shenzhen University Liu et al. (CSSE,


  1. Mixed Similarity Learning for Recommendation with Implicit Feedback Mengsi Liu, Weike Pan # , Miao Liu, Yaofeng Chen, Xiaogang Peng ∗ and Zhong Ming ∗ College of Computer Science and Software Engineering Shenzhen University Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 1 / 28

  2. Introduction Problem Definition and Illustration Recommendation with implicit feedback Input: Implicit feedback in the form of (user, item) pairs Output: A personalized ranked list of unexamined items for each user Figure: Illustration of mixed similarity learning. Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 2 / 28

  3. Introduction Notations Table: Some notations. user set, u ∈ U , |U| = n U item set, i , i ′ , j ∈ I , |I| = m I users that examined i U i items examined by u I u nearest neighbors of item i N i R = { ( u , i ) } examination records s ( p ) predefined similarity between i and i ′ ii ′ s ( ℓ ) learned similarity between i and i ′ ii ′ s ( m ) mixed similarity between i and i ′ ii ′ V i · , W i ′ · ∈ R 1 × d item-specific latent feature vector b i , b j item bias r ( p ) r ( m ) r ( ℓ ) ˆ ui , ˆ ui , ˆ predicted preference ui T iteration number λ s , α tradeoff parameter Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 3 / 28

  4. Introduction Overall of Our Solution ICF [Deshpande and Karypis, TOIS 2004]: item-oriented collaborative filtering with predefined similarity BPR [Rendle et al., UAI 2009]: recommendation with pairwise preference learning FISMauc [Kabbur, Ning and Karypis, KDD 2013]: recommendation with learned similarity We combine predefined similarity, learned similarity and pairwise preference learning in a single framework P-FMSM (pairwise factored mixed similarity model) P-FISM (pairwise factored item similarity model) is a special case of P-FMSM with learned similarity only. Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 4 / 28

  5. Method Prediction Rule of FISMauc and P-FISM The predicted rating of user u on item i ( i ∈ I u ), 1 r ui = b i + s ( ℓ ) � ˆ (1) ii ′ |I u \{ i }| � i ′ ∈I u \{ i } ii ′ = V i · W T where s ( ℓ ) i ′ · is the learned similarity between item i and item i ′ . The predicted rating of user u on item j ( j ∈ I\I u ), 1 r uj = b j + s ( ℓ ) � ˆ (2) ji ′ � |I u | i ′ ∈I u ji ′ = V j · W T where s ( ℓ ) i ′ · is the learned similarity between item j and item i ′ . Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 5 / 28

  6. Method Prediction Rule of P-FMSM The predicted rating of user u on item i ( i ∈ I u ), 1 s ( m ) r ui = b i + � ˆ (3) ii ′ |I u \{ i }| � i ′ ∈I u \{ i } where s ( m ) ii ′ + λ s s ( p ) = ( 1 − λ s ) s ( ℓ ) ii ′ s ( ℓ ) ii ′ is the mixed similarity . ii ′ The predicted rating of user u on item j ( j ∈ I\I u ), 1 s ( m ) r uj = b j + � ˆ (4) ji ′ � |I u | i ′ ∈I u where s ( m ) ji ′ + λ s s ( p ) = ( 1 − λ s ) s ( ℓ ) ji ′ s ( ℓ ) ji ′ is the mixed similarity . ii ′ Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 6 / 28

  7. Method Objective Function The objective function of BPR, P-FISM and P-FMSM, � � � f uij min (5) Θ u ∈U i ∈I u j ∈I\I u where f uij = − ln σ (ˆ r uij )+ α 2 � V i · � 2 + α 2 � V j · � 2 + α i ′ ∈I u || W i ′ · || 2 2 � b i � 2 + α 2 � b j � 2 , F + α � 2 r uij = ˆ r ui − ˆ r uj , and Θ = { W i · , V i · , b i , i = 1 , 2 , . . . , m } denotes the set of ˆ parameters to be learned. Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 7 / 28

  8. Method Gradients of P-FISM For a triple ( u , i , j ) , we have the gradients, ∂ f uij ∇ b j r uij )( − 1 ) + α b j , = − σ ( − ˆ = (6) ∂ b j ∂ f uij ∇ V j · r uij )( − ¯ U u · ) + α V j · , = − σ ( − ˆ = (7) ∂ V j · ∂ f uij ∇ b i r uij ) + α b i , = = − σ ( − ˆ (8) ∂ b i ∂ f uij U − i ∇ V i · r uij )¯ u · + α V i · , = − σ ( − ˆ = (9) ∂ V i · ∂ f uij V i · V j · ∇ W i ′ · r uij )( = − σ ( − ˆ = |I u \{ i }| α − |I u | α ) ∂ W i ′ · α W i ′ · , i ′ ∈ I u \{ i } + (10) ∂ f uij r uij ) − V j · ∇ W i · |I u | α + α W i · = − σ ( − ˆ = (11) ∂ W i · U − i where ¯ U u · = i ′ ∈I u W i ′ · and ¯ i ′ ∈I u \{ i } W i ′ · . 1 1 √ � u · = √ � |I u \{ i }| |I u | Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 8 / 28

  9. Method Gradients of P-FMSM For a triple ( u , i , j ) , we have the gradients, ∂ f uij ∇ b j r uij )( − 1 ) + α b j , = = − σ ( − ˆ (12) ∂ b j ∂ f uij ∇ V j · r uij )( − ¯ U u · ) + α V j · , = − σ ( − ˆ = (13) ∂ V j · ∂ f uij ∇ b i r uij ) + α b i , = − σ ( − ˆ = (14) ∂ b i ∂ f uij U − i ∇ V i · r uij )¯ u · + α V i · , = − σ ( − ˆ = (15) ∂ V i · ∂ f uij V i · V j · r uij )(( 1 − λ s ) + λ s s ( p ) ∇ W i ′ · = = − σ ( − ˆ ii ′ )( |I u \{ i }| α − |I u | α ) ∂ W i ′ · α W i ′ · , i ′ ∈ I u \{ i } + (16) r uij ) − (( 1 − λ s ) + λ s s ( p ) ii ′ ) V j · ∂ f uij ∇ W i · + α W i · = − σ ( − ˆ = (17) ∂ W i · |I u | α i ′ ∈I u (( 1 − λ s ) + λ s s ( p ) U u · = ii ′ ) W i ′ · and where ¯ 1 √ � |I u | i ′ ∈I u \{ i } (( 1 − λ s ) + λ s s ( p ) U − i ¯ ii ′ ) W i ′ · . 1 √ u · = � |I u \{ i }| Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 9 / 28

  10. Method Update Rules of P-FISM and P-FMSM For a triple ( u , i , j ) , we have the gradients, b j b j − γ ∇ b j = (18) V j · V j · − γ ∇ V j · = (19) b i b i − γ ∇ b i = (20) V i · V i · − γ ∇ V i · = (21) W i ′ · − γ ∇ W i ′ · , i ′ ∈ I u \{ i } W i ′ · = (22) W i · W i · − γ ∇ W i · = (23) where γ is the learning rate. Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 10 / 28

  11. Method Algorithm 1: Initialize the model parameters Θ 2: for t = 1 , . . . , T do for t 2 = 1 , . . . , |R| do 3: Randomly pick up a pair ( u , i ) ∈ R 4: Randomly pick up an item j from I\I u 5: Calculate the gradients via Eq.(12-17) 6: Update the model parameters via Eq.(18-23) 7: end for 8: 9: end for Figure: The SGD algorithm for P-FMSM. Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 11 / 28

  12. Experiments Datasets For direct comparative empirical studies, we use four public datasets 1 . Table: Statistics of the data used in the experiments, including numbers of users ( |U| ), items ( |I| ), implicit feedback ( |R| ) of training records (Tr.) and test records (Te.), and densities ( |R| / |U| / |I| ) of training records. Data set |U| |I| |R| (Tr.) |R| (Te.) |R| / |U| / |I| (Tr.) MovieLens100K 943 1682 27688 27687 1 . 75 % MovieLens1M 6040 3952 287641 287640 1 . 21 % UserTag 3000 2000 123218 123218 2 . 05 % Netflix5K5K 5000 5000 77936 77936 0 . 31 % 1 https://sites.google.com/site/weikep/GBPRdata.zip Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 12 / 28

  13. Experiments Evaluation Metrics We use Prec @ 5 and NDCG @ 5 in the experiments,   5 1 1 δ ( L u ( p ) ∈ I te Pre @ 5  � �  , = u ) |U te | 5 u ∈U te p = 1   2 δ ( L u ( p ) ∈I u 5 te ) − 1 1 1 NDCG @ 5 � � =  ,   |U te | log ( p + 1 ) � min ( 5 , | I te u | )  1 p = 1 u ∈U te p = 1 log ( p + 1 ) where L u ( p ) is the p th item for user u in the recommendation list, and δ ( x ) is an indicator function with value of 1 if x is true and 0 otherwise. Note that U te and I te u denote the set of test users and the set of examined items by user u in the test data, respectively. Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 13 / 28

  14. Experiments Baslines Ranking based on items’ popularity (PopRank) Item-oriented collaborative filtering with Cosine similarity (ICF) ICF with an amplifier on the similarity (ICF-A), which favors the items with higher similarity Factored item similarity model with AUC loss (FISMauc) and RMSE loss (FISMrmse) Hierarchical poisson factorization (HPF) Bayesian personalized ranking (BPR) A factored version of adaptive K nearest neighbors based recommendation KNN (FA-KNN) Group preference based BPR (GBPR) Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 14 / 28

  15. Experiments Initialization of Model Parameters We use the statistics of training data to initialize the model parameters, n b i � y ui / n − µ = u = 1 n b j y uj / n − µ � = u = 1 V ik ( r − 0 . 5 ) × 0 . 01 , k = 1 , . . . , d = W i ′ k ( r − 0 . 5 ) × 0 . 01 , k = 1 , . . . , d = where r (0 ≤ r < 1) is a random variable, and µ = � n � m i = 1 y ui / n / m . u = 1 Liu et al. (CSSE, SZU) Mixed Similarity Learning KBS 2017 15 / 28

Recommend


More recommend