etc. Axions and defects in the early Universe Frank Steffen Theory Group Max Planck Institute for Physics Munich, Germany MITP Scientific Program Jets, particle production and transport properties in collider and cosmological environments Mainz, July 28, 2014 Dark Matter in Cosmology and at Colliders 1
Astroparticle Physics Cosmology Particle Physics largest scales smallest scales Geneva CERN Planck LHC ESA What is the energy budget What are the fundamental of the Universe? constituents of matter? What is the particle 68% dark energy m H =126 GeV identity and origin of dark matter? 27% 5% dark Standard Model standard matter particles Dark Matter in Cosmology and at Colliders 2
Particle Physics Cosmology • 2012: LHC Higgs-boson discovery • 2013: Planck CMB sky map m H = 126 GeV 68% dark energy 27% 5% Standard particles dark matter • Intrinsic fine tuning problems • Cosmological puzzles ? Hierarchy Problem (m H << M Planck ) ? Matter-Antimatter Asymmetry ? Strong CP Problem ( Θ QCD << 1) ? Particle Identity & Origin of Dark Matter ? Small Neutrino Masses (m ν << m H ) ? Dark Energy = Cosmological Constant ➔ Physics beyond the Standard Model Dark Matter in Cosmology and at Colliders 3
Properties of Dark Matter • stable or lifetime well above the age of our Universe • electrically neutral • clusters • cold / warm • dissipationless • color neutral
Dark matter galaxies - rotation velocities galaxy clusters - gravitational lensing large scale structure ➔ Particle Identity of Dark Matter 68% dark energy 27% 5% dark standard matter particles Axions etc. Steffen
Dark Matter Candidates WIMP - Weakly Interacting Massive Particle WIMP miracle (1) (2) eq. 0.2 pb $ DM ! " anni freeze out m/T f ~ 20 (3) " anni ! 1 pb leads to the correct dark matter abundance. Fermi-scale annihilation cross section EWIP - Extremely Weakly Interacting Particle QCD processes thermally produced EWIP DM in the hot early Universe axion condensate Axions etc. 6 Steffen
Cosmic Relic Abundances reheating temp. decoupling temp. of X • T R > T D : 1+2 3+X T > T D : X in thermal eq. with the primordial plasma ( T ~ T D : X decouples as a thermal relic B. eq.) • T R > T D : 1+2 3+X T D >> T: X is never in th. eq. with the prim. plasma Boltzmann eq. but thermally produced collision term Axions etc. 7 Steffen
��� � Thermal EWIP DM production in the hot early Universe ☺ e ~ gravitino G e g a 68% + e τ decay analysis: m G a ~ dark energy g c G Image credit: Rhys Taylor, Cardiff University QCD 27% 5% dark g b g c standard matter particles today ? T R = 10 9 GeV ? initial temperature 7 Axions etc. Steffen
��� � Very Early Hot Universe Thermal Axion τ prod. at colliders (LHC, ILC, ...) e Production + e τ collection T ~ 10 7 GeV Axion Dark Matter g a a a e + e τ decay analysis: m e g a G , M Pl (?), G a QCD g c ... + g b g c g b g c mat. dom. Λ dom. inflation radiation dominated ρ rad ∝ a -4 ρ mat ∝ a -3 ρ Λ ∝ a 0 slow reheat 75% dark energy roll phase ρ ϕ ∝ a 0 dark matter Axion Condensate 5% 20% V ) Standard Model particles t 1s t 0 =14 Gy 100.000 y T 1 MeV 1eV T 0 =2.73 K T R = ? 1 GeV BBN LHC reheating a CMB C ν B temp. Axions etc. 9 Steffen
Dark Matter Candidates interactions standard particles superpartners Supersymmetry Standard Model strong & electroweak neutralino WIMP Supergravity extremely weak Gravity ~ graviton gravitino G G EWIP Peccei-Quinn (PQ) Symmetry axion axino ~ a a EWIP EWIP Axions etc. 10 Steffen
Why Supersymmetry? Gauge Couplings Gaugino Mass Parameters Extension of Space-Time Symmetry 8 11 14 100 100000. 1. � 10 1. � 10 1. � 10 8 11 14 100 100000. 1. � 10 1. � 10 1. � 10 1 . 2 m 1 / 2 = 400 GeV 1.2 1.2 Gauge Coupling Unification 1000 1 . 1 1000 1.1 1.1 M 3 ( Q ) g s ( Q ) 1 1 1 Hierarchy Stabilization 800 800 M 2 ( Q ) /x 2 M α [GeV] 0 . 9 0.9 0.9 0 . 8 600 0.8 0.8 600 (Super-) Gravity g ( Q ) 0 . 7 M 1 ( Q ) /x 1 0.7 0.7 M 2 ( Q ) 400 400 0 . 6 0.6 0.6 Consistent String Theory � 5 / 3 g � ( Q ) M 1 ( Q ) 0 . 5 0.5 0.5 200 200 10 2 10 6 10 8 10 11 10 14 10 2 10 6 10 8 10 11 10 14 100 100000. 8 11 14 M GUT M GUT 1. � 10 1. � 10 1. � 10 100 100000. 8 11 14 1. � 10 1. � 10 1. � 10 Q [GeV] Q [GeV] Dark Matter Gauge Coupling Unification at M G UT � 2 × 10 16 GeV Axions etc. 11 Steffen
R-Parity Conservation Conservation of R-Parity • superpotential: W MSSM ← W ∆ L + W ∆ B • non-observation of L & B violating processes (proton stability, ...) • postulate conservation of R-Parity ← multiplicative quantum number +1 for SM , H u , H d 2 P R = ( − 1) 3( B − L )+ S = � − 1 for X ← superpartners SM 1 SUSY 2 SUSY SUSY 1 R-Parity R-Parity SM 2 SM The lightest supersymmetric particle (LSP) is stable!!! Axions etc. 12 Steffen
Dark Matter Candidates interactions standard particles superpartners Supersymmetry Standard Model strong & electroweak neutralino WIMP Supergravity extremely weak Gravity ~ graviton gravitino G G EWIP Peccei-Quinn (PQ) Symmetry axion axino ~ a a EWIP EWIP Axions etc. 13 Steffen
� ��� Standard Thermal History of the Universe mat. dom. Λ dom. inflation radiation dominated ρ rad ∝ a -4 ρ mat ∝ a -3 ρ Λ ∝ a 0 slow reheat 75% dark energy roll phase ρ ϕ ∝ a 0 dark matter 5% 20% V Standard Model particles LSS 400.000 y t 1s t 0 =14 Gy 100.000 y T 1 MeV 1eV T 0 =2.73 K T R = ? BBN LHC reheating a C ν B CMB temp. Axions etc. 14 Steffen
� ��� Standard Thermal History of the Universe mat. dom. Λ dom. inflation radiation dominated ρ rad ∝ a -4 ρ mat ∝ a -3 ρ Λ ∝ a 0 slow reheat 75% neutralino pair annihilation Cold Thermal Relic dark energy χ 0 χ 0 e 1 e 1 → SM 1 SM 2 roll phase 6!7 • direct detection (CRESST, EDELWEISS, ...) 6E7 ρ ϕ ∝ a 0 eq. elastic neutralino scattering χ 0 χ 0 dark matter e 1 A → e 1 A 5% freeze out 20% • prod.@colliders (Tevatron, LHC, ILC, ...) m/T f ~ 20 V 6L7 Standard neutralino pair production Model particles χ 0 χ 0 p p → e 1 e 1 ... (Tevatron, LHC) LSS e + e − → e χ 0 χ 0 1 e 1 ... (ILC) [Talk by Manuel Drees] 400.000 y [... , Jungman, Kamionkowski, Griest, ’96, ...] Supersymmetric Dark Matter in Cosmology and at Colliders 18 t 1s t 0 =14 Gy 100.000 y T 10 GeV 1 MeV 1eV T 0 =2.73 K T R = ? BBN WIMP LHC reheating a C ν B CMB freeze temp. out Axions etc. 14 Steffen
Neutralino LSP Case annihilation funnel focus point region coannihilation region bulk region N [see Baltz, Battaglia, Peskin, Wizansky, ’06] [Battaglia] no colored sparticles involved Axions etc. 15 Steffen
WIMP paradigm & prospects MAGIC WIMP paradigm • indirect detection (EGRET, GLAST, ...) Neutralino neutralino pair annihilation WIMP-nucleus scattering energetische χ 0 χ 0 e 1 e 1 → SM 1 SM 2 kosmische Strahlung Neutralino [a] [b] • direct detection (CRESST, EDELWEISS, ...) CRESST Neutralino DM-SM mediators elastic neutralino scattering Rückstoß Atomkern DM states SM states χ 0 χ 0 1 A → e 1 A e • prod.@colliders (Tevatron, LHC, ILC, ...) Wärme [c] [d] Cosmological (also galactic) annihilation ATLAS Proton Neutralino neutralino pair production Collider WIMP pair-production χ 0 χ 0 Standard- p p → e 1 e 1 ... (Tevatron, LHC) modell- teilchen e + e − → e χ 0 χ 0 1 e 1 ... (ILC) Proton Neutralino [e] [f] [Talk by Manuel Drees] Axions etc. 16 Steffen
Neutralino DM Production at the LHC High P T jet Neutralino [mass difference is large] [ diff i l ] SM Particles DM The p T of jets and leptons depend on the sparticle masses which are given by masses which are given by models Colored particles get produced and decay into weakly interacting stable weakly interacting stable Neutralino particles SM Particles R-parity conserving DM ( or l + l - , τ + τ− ) High P T jet Th The signal : jets + leptons + missing E T i l j t + l t + i i E [from B. Dutta’s Talk, SUSY 2007] Axions etc. 17 Steffen
� � � � � � Collider Dark Matter Searches: Limits Only M1/2' Msquark' 2012 8TeV 2012 8TeV 5.8fb -1 5.8fb -1 2011 7TeV 2011 7TeV 4.7fb -1 4.7fb -1 M0' Mgluino' Axions etc. 18 Steffen
Direct neutralino WIMP dark matter searches − 39 XENON100 (2012) DAMA/Na Observed Limit (90% CL) ± 1 σ Expected − 40 CoGeNT ± 1 σ Expected DAMA/I − 41 cm 2 �i ) 1 2 0 2 ( E L P M S I ) 2 1 0 CRESST-II (2012) 2 ( − 42 P P U � O C ) 2 1 0 2 ( 1 p I I I N - I L R × σ S I χ 0 P E Z ˜ ) 1 1 − 43 0 2 EDELWEISS (2012) ( 0 0 1 N O N E X CDMS (2011) − 44 h log 10 mSUGRA − 45 m h 0 = 125 . 3 ± 0 . 6 GeV XENON1T − 46 (Projection) SuperCDMS1T (Projection) − 47 1 2 3 10 10 10 1 (GeV) m ˜ χ 0 [Akula, Nath, arXiv:1210.0520] S. Akula, PN, arXiv:1210.0520 [hep-ph]. . Axions etc. 19 Steffen
Recommend
More recommend