miscellaneous set concepts
play

Miscellaneous Set Concepts Slides to accompany Sections 1.(8 & 9) - PowerPoint PPT Presentation

Miscellaneous Set Concepts Slides to accompany Sections 1.(8 & 9) of Discrete Mathematics and Functional Programming Thomas VanDrunen Tree example T SugarMaple SilverMaple BoxElder BaldCypress PinOak WhitePine LiveOak BristleconePine


  1. Miscellaneous Set Concepts Slides to accompany Sections 1.(8 & 9) of Discrete Mathematics and Functional Programming Thomas VanDrunen

  2. Tree example T SugarMaple SilverMaple BoxElder BaldCypress PinOak WhitePine LiveOak BristleconePine | I | = 6 .

  3. Tree example T SugarMaple SilverMaple A BoxElder BaldCypress PinOak WhitePine LiveOak BristleconePine C | I | = 6 .

  4. Tree example T SugarMaple SilverMaple D BoxElder BaldCypress PinOak WhitePine LiveOak E BristleconePine | I | = 6 .

  5. Tree example T SugarMaple SilverMaple BoxElder BaldCypress PinOak I WhitePine LiveOak BristleconePine | I | = 6 .

  6. Tree example T M SugarMaple SilverMaple BoxElder BaldCypress X PinOak WhitePine LiveOak BristleconePine Q P | I | = 6 .

  7. Cardinality T SugarMaple SilverMaple BoxElder BaldCypress X PinOak I WhitePine LiveOak E BristleconePine | I | = 6 . | X | = 1 . | E | = 3 . | I − E | = 5 . | X − I | = 0 .

  8. Disjoint T M SugarMaple SilverMaple BoxElder BaldCypress PinOak WhitePine LiveOak E BristleconePine M ∩ E = ∅ . | M ∩ E | = 0 .

  9. Not Disjoint T SugarMaple SilverMaple D A BoxElder BaldCypress PinOak WhitePine LiveOak E BristleconePine C A ∩ E = { LiveOak } � = ∅ . C ∩ D = { BaldCypress } � = ∅ .

  10. Pairwise disjoint T M SugarMaple SilverMaple BoxElder BaldCypress X PinOak WhitePine LiveOak BristleconePine Q P | I | = 6 .

  11. Questions ( E − C ) ∩ ( C − E ) = ( { LiveOak , WhitePine , BristleconePine } −{ WhitePine , BristleconePineBaldCypress } ) ∩{ WhitePine , BristleconePineBaldCypress } − ( { LiveOak , WhitePine , BristleconePine } ) = { LiveOak } ∩ { BaldCypress } ∅ = Is it true that for any two sets A and B , ( A − B ) ∩ ( B − A ) = ∅ ?

  12. Questions | M ∪ Q | |{ SugarMaple , SilverMaple , BoxElder } = ∪{ PinOak , LiveOak }| |{ SugarMaple , SilverMaple , BoxElder , = PinOak , LiveOak }| = 5 = 3 + 2 = |{ SugarMaple , SilverMaple , BoxElder }| + |{ PinOak , LiveOak }| = | M | + | Q | Is it true that for any two sets A and B , | A ∪ B | = | A | + | B | ?

  13. Questions | C − X | = |{ WhitePine , BristleconePine , BaldCypress } −{ BaldCypress }| = |{ WhitePine , BristleconePine }| = 2 = 3 − 1 = |{ WhitePine , BristleconePine , BaldCypress }| −|{ BaldCypress }| | C | − | X | = Is it true that for any two sets A and B , | A − B | = | A | − | B | ?

  14. Cartesian Plane

  15. Cartesian Plane

  16. Cartesian Plane

  17. Cartesian Plane

  18. Cartesian Plane

  19. Cartesian Plane

  20. Cartesian Plane

  21. Cartesian Plane

  22. Cartesian Plane

  23. Cartesian Plane

  24. Cartesian Plane

  25. Cartesian Plane

  26. Cartesian Plane

  27. Cartesian Plane

  28. Cartesian Plane

  29. Cartesian Plane

  30. Cartesian Plane

  31. Cartesian Plane

  32. Cartesian Plane

  33. Cartesian Plane (8.6, 5.5)

  34. Cartesian product Real (Cartesian) plane R × R = { ( x , y ) | x , y ∈ R } Cartesian product of sets X and Y : X × Y = { ( x , y ) | x ∈ X and y ∈ Y } (The set of ordered pairs drawn from X and Y .)

Recommend


More recommend