minimum rectilinear polygons for given angle sequences
play

Minimum Rectilinear Polygons for Given Angle Sequences W. Evans 1 , - PowerPoint PPT Presentation

Minimum Rectilinear Polygons for Given Angle Sequences W. Evans 1 , K. Fleszar 2 , P. Kindermann 2 , N. Saeedi 1 , C.-S. Shin 3 , A. Wolff 2 1. UBC, Canada 2. W urzburg Univ., Germany 3. HUFS, Korea Problems Rectilinear polygon P Problems


  1. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  2. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  3. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  4. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  5. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  6. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  7. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  8. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  9. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:                  S                

  10. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea:

  11. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m

  12. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m Blocks:

  13. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m Blocks: 4 · 6 m · s j 6 m · ( m + 1)

  14. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m Blocks: 4 · 6 m · s j 6 m · ( m + 1)

  15. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m Blocks: 4 · 6 m · s j 6 m · ( m + 1) Walls:

  16. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m Blocks: 4 · 6 m · s j 6 m · ( m + 1) Walls: ≈ m 4 B

  17. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m Blocks: 4 · 6 m · s j 6 m · ( m + 1) Walls: ≈ m 4 B

  18. Reduction (Sketch) Given an instance S = ( s 1 , . . . , s 3 m ) of 3-Partition, compute in poly( m ) time K > 0 and an instance σ of MinBBLRSequence s.t. area( σ ) < K ⇔ S is yes-instance Idea: Distance always 2 · 3 m Blocks: 4 · 6 m · s j 6 m · ( m + 1) Walls: ≈ m 4 B reduction ∈ poly( m , B )

  19. Minimizing the Area of xy -monotone Polygons

  20. Polygon canonical if . . .

  21. Polygon canonical if . . . extreme edges

  22. Polygon canonical if . . . Bounding Box extreme edges Bounding Box

  23. Polygon canonical if . . . Bounding Box extreme edges . . . connected to a blue stair! Bounding Box

  24. Example: Canonical Polygon connected Def.

  25. Example: Canonical Polygon connected Def.

  26. Example: Canonical Polygon connected Def.

  27. Example: Canonical Polygon connected Def. not connected!

  28. Example: Canonical Polygon However . . . connected Def.

  29. Example: Canonical Polygon However . . . connected Def. connected! . . . is canonical.

  30. connected Lemma : There is an optimum Def. canonical polygon!

  31. connected Lemma : There is an optimum Def. canonical polygon! How to find it?

  32. Computing Optimum Canonical Polygon Given angle sequence . . . TL TR BL BR

  33. Computing Optimum Canonical Polygon Given angle sequence . . . . . . O (1) candidates for OPT. TR TL TR TL BR BL BR BL

  34. Computing Optimum Canonical Polygon Given angle sequence . . . . . . O (1) candidates for OPT. TL TR TL TR TL or TR BR BL BL BR BL BR

  35. Computing Optimum Canonical Polygon Given angle sequence . . . . . . O (1) candidates for OPT. TL TR TL TR TL or TR BR BL BL BR BL BR

  36. Computing Optimum Canonical Polygon Given angle sequence . . . . . . O (1) candidates for OPT. TL TR TL TR TL or TR BR BL BL BR BL BR

  37. Computing Optimum Canonical Polygon Given angle sequence . . . . . . O (1) candidates for OPT. TL TR TL TR TL or TR BR BL BL BR BL BR

  38. Computing Optimum Canonical Polygon Given angle sequence . . . . . . O (1) candidates for OPT. TL TR TL TR TL or TR BR BL BL BR BL BR

  39. Computing Area of a Candidate Given a candidate . . .

  40. Computing Area of a Candidate Given a candidate . . . ≤ 2 stairs

  41. Computing Area of a Candidate Given a candidate . . . Easy to solve! ≤ 2 stairs

  42. Computing Area of a Candidate Given a candidate . . . O ( n ) time ≤ 2 stairs OPT 1 OPT 2 OPT 3

  43. Computing Area of a Candidate Given a candidate . . . Put together! O ( n ) time ≤ 2 stairs OPT 1 OPT 2 OPT 3

  44. Computing Area of a Candidate Given a candidate . . . O ( n ) time ≤ 2 stairs OPT 1 OPT 2 OPT 3

  45. Computing Area of a Candidate Given a candidate . . . O ( n ) time ≤ 2 stairs OPT 1 OPT 2 OPT 3

  46. Computing Area of a Candidate Given a candidate . . . O ( n ) time ≤ 2 stairs OPT 1 OPT 2 OPT 3

  47. Computing Area of a Candidate Given a candidate . . . O ( n ) time ≤ 2 stairs OPT 1 OPT 2 OPT 3

  48. Algorithm Algorithm : For every candidate × O (1) compute OPT candidate compute OPT candidate O ( n ) OPT = min OPT candidate O ( n )

  49. Minimizing Bounding Box of x -monotone Polygons

  50. Canonical x -monotone Polygons Bounding Box (BB)

  51. Canonical x -monotone Polygons

  52. Canonical x -monotone Polygons

  53. Canonical x -monotone Polygons Canonical

  54. Canonical x -monotone Polygons Red part fixed!

  55. Canonical x -monotone Polygons Red part fixed! Only unknowns: a) Height of BB b) Width of extreme edges

  56. Canonical x -monotone Polygons Red part fixed! Only unknowns: a) Height of BB Algorithm : Guess height of BB b) Width of extreme edges Use DP to find widths

  57. DP Algorithm T [ p , e ] h

  58. DP Algorithm T [ p , e ] p

  59. DP Algorithm T [ p , e ] e p

  60. DP Algorithm T [ p , e ] = minimum w s.t. left part ∈ BB( w × h ) e left part h p w

Recommend


More recommend